bert_uncased_L-8_H-256_A-4

bert_uncased_L-8_H-256_A-4

24种BERT小模型为计算资源有限的研究环境提供支持

此项目提供24种BERT模型,适用于计算资源有限的环境,可通过知识蒸馏进行有效的模型微调,支持低资源机构的研究工作。

计算资源预训练知识蒸馏开源项目BERT模型Huggingface模型压缩Github

项目介绍:bert_uncased_L-8_H-256_A-4

背景介绍

BERT Miniatures项目是由24个BERT模型组成的套件,这些模型在Well-Read Students Learn Better: On the Importance of Pre-training Compact Models一文中被首次提出。BERT(全称是Bidirectional Encoder Representations from Transformers)是一个强大的自然语言处理模型,该项目的主要目标是证明标准的BERT训练方法对于不同大小的模型同样有效,而不仅限于BERT-Base和BERT-Large。

模型特性

这个项目特别为有限计算资源的环境而设计,旨在为计算资源较少的研究机构提供便利。与初始的BERT模型一样,这些较小的BERT模型也可以通过微调进行训练。不过,它们在知识蒸馏的上下文中效果更佳,即从一个更大更准确的“老师”模型生成微调标签。在这次介绍中,我们将以bert_uncased_L-8_H-256_A-4为重点,它属于L=8层、H=256隐藏单元的设置。

模型下载

这套模型可以从官方BERT GitHub页面或者通过HuggingFace平台下载。需要注意的是,无论是何种版本,所有模型均通过相同的训练策略进行再训练。

性能表现

在GLUE测试集中的性能表现上,bert_uncased_L-8_H-256_A-4展现了良好的效果。以下是BERT系列模型的一些测试结果:

模型得分CoLASST-2MRPCSTS-BQQPMNLI-mMNLI-mmQNLI(v2)RTEWNLIAX
BERT-Tiny64.20.083.281.1/71.174.3/73.662.2/83.470.270.381.557.262.321.0
BERT-Mini65.80.085.981.1/71.875.4/73.366.4/86.274.874.384.157.962.326.1
BERT-Small71.227.889.783.4/76.278.8/77.068.1/87.077.677.086.461.862.328.6
BERT-Medium73.538.089.686.6/81.680.4/78.469.6/87.980.079.187.762.262.330.5

训练参数

在模型训练中,每个任务均选择最佳的微调超参数,并训练4个epoch。可选的批处理大小包括8, 16, 32, 64, 128,学习率则有3e-4, 1e-4, 5e-5, 3e-5。

结论

BERT Miniatures项目的推出,旨在推动有限资源研究机构的研究发展,同时激励自然语言处理社区在模型能力以外的方向上寻求创新。对于该项目有兴趣的学者,可以参考文中的链接下载相应模型以便进一步的研究探索。在使用这些模型时,请引用如下文献:

@article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} }

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多