Project Icon

pegasus-large

解析Pegasus模型的混合与随机检查点方法

Pegasus模型利用C4和HugeNews数据集,通过混合与随机采样策略提高文本摘要的质量。该模型经过1.5M步长训练,优化了摘要的流畅性和准确性,适用于多种大型数据集。

Pegasus-large项目介绍

项目概述

Pegasus-large是一个由Jingqing Zhang、Yao Zhao、Mohammad Saleh和Peter J. Liu于2019年12月18日发表的项目,专注于文本摘要任务。它旨在通过对大规模文本进行预训练和重要句子的提取,实现对文本的抽象性摘要。该项目的原始代码可以在Google Research的GitHub上找到,而项目的详细文档可参考Hugging Face的文档

Pegasus模型的特点

Pegasus-large项目引入了“混合与随机”的检查点训练策略,利用C4和HugeNews这两个数据集进行模型训练,并在训练中随机抽取重要句子。相比于传统的方法,这种策略在多个数据集上的摘要效果都有显著提升。下表展示了该模型在不同数据集上的表现:

数据集C4HugeNews混合与随机
xsum45.20/22.06/36.9947.21/24.56/39.2547.60/24.83/39.64
cnn_dailymail43.90/21.20/40.7644.17/21.47/41.1144.16/21.56/41.30
newsroom45.07/33.39/41.2845.15/33.51/41.3345.98/34.20/42.18
multi_news46.74/17.95/24.2647.52/18.72/24.9147.65/18.75/24.95
gigaword38.75/19.96/36.1439.12/19.86/36.2439.65/20.47/36.76
wikihow43.07/19.70/34.7941.35/18.51/33.4246.39/22.12/38.41 *
reddit_tifu26.54/8.94/21.6426.63/9.01/21.6027.99/9.81/22.94
big_patent53.63/33.16/42.2553.41/32.89/42.0752.29/33.08/41.66 *
arxiv44.70/17.27/25.8044.67/17.18/25.7344.21/16.95/25.67
pubmed45.49/19.90/27.6945.09/19.56/27.4245.97/20.15/28.25
aeslc37.69/21.85/36.8437.40/21.22/36.4537.68/21.25/36.51
billsum57.20/39.56/45.8057.31/40.19/45.8259.67/41.58/47.59

训练策略

  • 数据集使用:模型在C4和HugeNews两个数据集上进行训练,数据集的混合比例根据样本数量进行加权。
  • 训练时间:相比普通的500k步,模型进行了1.5M步的训练以获得更好的预训练效果。
  • 句间隙比例:模型在训练时统一随机选择15%到45%的句间隙比例。
  • 重要句子的选择:在重要性评分上应用了20%的均匀噪声来采样重要句子。
  • 分词器的更新:为了更好地处理段落信息,更新后的分词器能够对换行符进行编码。

特殊说明

部分数据集(如wikihow和big_patent)的结果由于分词方式和数据处理的改变,不完全可比。wikihow数据集中含有对段落分隔很重要的换行符,而模型在旧版中缺乏编解码能力,big_patent数据集则对大小写进行了保留并做了一些格式清理。

引用

如果对Pegasus-large项目相关研究感兴趣,可以参考以下论文:

@misc{zhang2019pegasus,
    title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization},
    author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu},
    year={2019},
    eprint={1912.08777},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

该项目体现了文本摘要领域的前沿技术,通过创新性的训练策略和数据集应用,为各类文本摘要任务提供了更为高效和准确的解决方案。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号