Project Icon

tapas-base-finetuned-wtq

TAPAS基础模型在WikiTable Questions数据集上的微调版本

该项目是TAPAS基础模型在WikiTable Questions (WTQ)数据集上的微调版本。模型采用相对位置嵌入,经过掩码语言建模和中间预训练后,通过SQA、WikiSQL和WTQ数据集进行链式微调。在WTQ开发集上,模型达到46.38%的准确率。项目提供两个版本:默认的相对位置嵌入版本和可选的绝对位置嵌入版本,可用于表格相关的问答任务。

whisper-tiny-quiztest - 微型语音识别模型为Quiz测试场景提供精准解决方案
GithubHuggingfaceWhisper Tiny开源项目数据集机器学习模型模型微调语音识别
Whisper Tiny Quiztest是一款基于openai/whisper-tiny模型优化的自动语音识别(ASR)系统,专注于提升quiz测试场景的识别效果。通过在quiztest数据集上的训练,该模型在评估集上实现了55.05%的词错误率(WER)。采用Adam优化器和余弦退火学习率策略,经过1000步训练后,模型性能得到显著提升。作为一个轻量级解决方案,Whisper Tiny Quiztest为Quiz应用提供了高效的语音识别支持。
table-transformer-structure-recognition-v1.1-all - Table Transformer开源表格结构识别模型
GithubHuggingfaceTable Transformer开源项目文档分析模型深度学习表格识别计算机视觉
Table Transformer是一个开源的表格结构识别模型,基于DETR架构设计。该模型在PubTables1M和FinTabNet.c数据集上进行了预训练,采用'normalize before'设置优化了网络结构。Table Transformer能够准确检测文档中的表格,为表格结构分析提供了有力支持。项目提供了详细文档,便于研究人员和开发者进行深入研究和实际应用。
bert-base-uncased-squad2 - 使用BERT模型提升问答任务的准确性
GithubHaystackHuggingfacebert-base-uncased开源项目模型模型转换深度学习问题回答
该项目使用bert-base-uncased模型在SQuAD 2.0数据集上执行问答任务,与Haystack框架结合以实现文档层面的强大问答功能。性能方面,该模型在精确匹配和F1指标上达到了75.65和78.61,显示了其在提取式问答中的有效性。项目还包括详细的超参数设置和使用指南,便于快速部署。
distilbert-base-uncased-distilled-squad - DistilBERT轻量级问答模型
DistilBERTGithubHuggingfaceSQuAD开源项目机器学习模型自然语言处理问答系统
distilbert-base-uncased-distilled-squad是一个经过知识蒸馏的轻量级问答模型。它基于DistilBERT架构,在SQuAD v1.1数据集上进行了微调。该模型在保留BERT 95%性能的同时,参数量减少40%,速度提升60%。在SQuAD v1.1开发集上,它实现了86.9的F1分数。凭借其高效性能,这个模型适合各种需要快速、准确问答能力的应用场景。
Qwen2.5-7B-Instruct-GPTQ-Int8 - Qwen2.5模型实现多语言支持与优化长文本处理
GithubHuggingfaceQwen2.5多语言支持大模型开源项目指令微调模型量化模型
Qwen2.5模型具备多语言支持和改良的长文本处理能力,增强了编程、数学及指令执行的表现。其GPTQ-8位量化模型支持最长128K上下文与最高生成8192个令牌,提供因果语言模型架构,适合多领域应用。支持29种语言,包括中文、英语和法语,为开发者提供多样化的功能。
flan-t5-base-finetuned-QLoRA-v2 - 基于flan-t5-base的新闻摘要生成,专注内容理解与解析
GithubHuggingfaceRougecnn_dailymailfine-tuningflan-t5-base开源项目模型训练超参数
flan-t5-base-finetuned-QLoRA-v2模型经过cnn_dailymail数据集微调,聚焦新闻摘要生成。基于google的flan-t5-base,模型在评价集的Rouge1、Rouge2、Rougel指标分别为0.244、0.111和0.2032。利用PEFT库、Transformers与Pytorch进行训练,确保了高效兼容性。适合需要自动化理解和处理新闻内容的场景。
t5-base - 多语言自然语言处理的统一文本转换模型
GithubHuggingfaceT5模型多任务学习开源项目文本到文本转换模型自然语言处理迁移学习
T5-base是一个具有2.2亿参数的语言模型,将NLP任务统一为文本到文本格式。该模型在机器翻译、摘要、问答和分类等任务中表现优异,支持多种语言。T5-base采用创新的预训练方法,结合无监督和有监督任务,在24个NLP任务中进行了评估,为NLP研究和应用提供了强大支持。
bert-small-pretrained-finetuned-squad - 小型BERT模型在SQuAD数据集上的精细调优结果
GithubHuggingfaceSQuAD数据集bert-small-pretrained-finetuned-squad准确率开源项目微调模型模型训练超参数
项目使用SQuAD数据集对bert-small模型进行了精细调优,提升了性能,精确匹配率为72.20%,F1评分为81.32%。该模型基于anas-awadalla的预训练版本,通过超参数优化提升了问答系统的精准度,适合注重效率和模型紧凑性的开发者与研究人员使用。
t5-base-finetuned-span-sentiment-extraction - 基于T5的文本情感关键词提取模型
GithubHuggingfaceT5开源项目情感分析文本提取机器学习模型自然语言处理
基于Google T5模型的情感跨度提取(Sentiment Span Extraction)微调项目,通过识别文本中表达情感的关键词或短语,实现社交媒体文本分析。项目使用Tweet Sentiment Extraction数据集训练,支持提取积极、消极或中性情感判断的文本片段,可应用于品牌监测和情感分析场景。
t5-v1_1-base - Google T5模型的改进版本 专注于文本到文本的转换任务
C4数据集GithubHuggingfaceT5开源项目模型自然语言处理迁移学习预训练模型
t5-v1_1-base是Google T5模型的升级版,引入GEGLU激活函数并采用无dropout预训练策略。该模型仅在C4数据集上进行预训练,使用前需针对特定任务微调。在文本摘要、问答和分类等多个自然语言处理任务中,t5-v1_1-base展现出卓越性能,为NLP领域提供了新的研究方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号