tapas-tiny-finetuned-wtq

tapas-tiny-finetuned-wtq

TAPAS模型为WikiTable问题提供精准问答解决方案

TAPAS模型经过在WikiTable Questions数据集上的精细调优,提供多种版本以满足不同需求。利用相对和绝对位置嵌入选择,在表格问答任务中表现优异。模型通过掩码语言模型和中间预训练增强数值推理能力,并通过添加单元选择头和聚合头微调SQA、WikiSQL和WTQ数据集以提升问答性能。

表格问答Hugging FaceTAPAS预训练模型Github开源项目微调Huggingface

项目介绍

tapas-tiny-finetuned-wtq 是一个基于 WikiTable Questions (WTQ) 微调的 TAPAS 微模型,该模型独特地结合了创新的表格问答功能。

模型背景

该模型有两个版本。默认版本是 tapas_wtq_wikisql_sqa_inter_masklm_tiny_reset,此版本结合了相对位置嵌入,即在每个表格单元格处重置位置索引。另一个版本是 no_reset,它使用绝对位置嵌入。

Tapas 模型本质上是一种类似于 BERT 的转化器模型,在大规模的英文数据集上以自监督的方式预训练。它不需要人为标注,而是通过自动化过程生成输入和标签,进行两种预训练目标:

  • 掩蔽语言模型(MLM):随机掩蔽输入中的 15% 单词,并要求模型预测这些被掩蔽的单词。
  • 中间预训练:创建大量合成的训练数据样本,训练模型判断句子是否由表格内容支持或否定,促进数值推理能力。

使用用途

此模型主要用于针对表格的问题回答。用户可以通过 HuggingFace 平台上的文档获取相关使用代码示例。

训练过程

在训练过程中,文本会先被小写处理,并以 WordPiece 和大小为 30,000 的词汇表进行标记化。输入模型的格式为 [CLS] 问题 [SEP] 扁平化的表格 [SEP]

模型微调使用 32 个 Cloud TPU v3 核心运行 50,000 步,每次处理 512 长度的序列,批量大小为 512。该过程大约需要十小时。优化器使用 Adam,学习率为 1.93581e-5,热身比率为 0.128960。微调还引入了偏移量,使模型只选择同列单元格,这在 TapasConfigselect_one_column 参数中得到体现。

结果表现

模型在不同设置下表现略有差异,具有重置功能的 TINY 版本在开发集上的准确率为 0.1039,而不重置版本为 0.0823。尽管它们的准确率较低,但在轻量级模型中,仍显示了其模型潜力。

相关文献

模型与其训练方法在多篇科学论文中被详细描述,包括 2020 年由 Jonathan Herzig 等人发表的研究 Tapas 弱监督表格解析的工作,以及 Julian Martin Eisenschlos 等人关于表格中间预训练的研究。

通过理解和利用 tapas-tiny-finetuned-wtq,研究人员和开发者能够更好地进行表格数据的处理和问答任务的实现。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多