ManiSkill

ManiSkill

开源机器人仿真与训练统一框架

ManiSkill是基于SAPIEN的开源机器人仿真与训练框架。它提供GPU并行化视觉数据采集系统,支持多种机器人和任务类型。该框架具有高效的GPU并行任务处理能力,可快速生成合成数据并在不同场景中进行仿真。ManiSkill提供灵活的任务构建API,简化GPU内存管理。它支持2D/3D视觉强化学习、模仿学习等工作流程,未来将扩展更多资产和场景支持。

ManiSkill 3机器人仿真GPU并行开源框架SAPIENGithub开源项目

ManiSkill 3(测试版)

预览图

<p style="text-align: center; font-size: 0.8rem; color: #999;margin-top: -1rem;">使用光线追踪渲染的环境/机器人样本。场景数据集来自AI2THOR和ReplicaCAD</p>

下载量 在Colab中打开 PyPI版本 文档状态 Discord

ManiSkill是一个由SAPIEN驱动的强大的统一机器人仿真和训练框架。整个框架尽可能开源,ManiSkill v3目前处于测试版发布阶段。其特点包括:

  • GPU并行化的视觉数据收集系统。在高端硬件上,使用4090 GPU可以以20k FPS的速度收集RGBD + 分割数据,比大多数其他模拟器快10-100倍。
  • 示例任务涵盖了广泛的不同机器人形态(四足机器人、移动操作机器人、单臂机器人)以及各种不同的任务(桌面操作、运动、灵巧操作)。
  • GPU并行化任务,能够在仿真中进行极快的合成数据收集。
  • GPU并行化任务支持模拟多样化场景,每个并行环境都有完全不同的场景/物体集。
  • 灵活的任务构建API,抽象了许多复杂的GPU内存管理代码。

ManiSkill计划支持各种工作流程,包括但不限于基于2D/3D视觉的强化学习、模仿学习、感知-规划-行动等。ManiSkill还将支持更多资产/场景(例如AI2THOR),以及其他功能,如用于评估真实世界策略的数字孪生。有关在正式v3发布之前计划添加的功能,请参阅我们的路线图

请参阅我们的文档,了解从构建任务到数据收集的教程等更多信息。

注意: 本项目目前处于测试版发布阶段,因此并非所有功能都已添加,可能存在一些错误。如果您发现任何错误或有任何功能请求,请在我们的GitHub issues上发布,或在GitHub discussions中讨论。我们还有一个Discord服务器,用于发布公告和讨论ManiSkill相关内容。

寻找原始ManiSkill2的用户可以在v0.5.3标签找到该代码库的提交。

安装

ManiSkill的安装非常简单,您只需运行几个pip安装命令即可

# 安装包 pip install --upgrade mani_skill # 安装与您的系统兼容的torch版本 pip install torch torchvision torchaudio

最后,您还需要按照这里的说明设置Vulkan

有关安装的更多详细信息(例如,从源代码安装或进行故障排除),请参阅文档

入门

要开始使用,请查看快速入门文档:https://maniskill.readthedocs.io/en/latest/user_guide/getting_started/quickstart.html

我们还有一个快速入门Colab笔记本,让您无需自己的硬件即可尝试GPU并行化仿真。所有内容都可以在Colab免费版上运行。

有关可以运行的完整示例脚本列表,请参阅文档

系统支持

我们目前最好地支持基于Linux的系统。Windows系统的支持有限,目前不支持MacOS。我们正在努力尝试在其他系统上支持更多功能,但这可能需要一些时间。大多数限制源于SAPIEN包能够支持的功能。

系统 / GPUCPU仿真GPU仿真渲染
Linux / NVIDIA GPU
Windows / NVIDIA GPU
Windows / AMD GPU
WSL / 任何GPU
MacOS / 任何GPU

引用和核心团队

ManiSkill 3的技术论文即将发布。

目前的作者列表如下:Stone Tao*、Fanbo Xiang*、Arth Shukla、Chen Bao、Nan Xiao、Rui Chen、Tongzhou Mu、Tse-Kai Chan、Xander Hinrichsen、Xiaodi Yuan、Xinsong Lin、Xuanlin Li、Yuan Gao、Yuzhe Qin、Zhiao Huang、Hao Su

许可

ManiSkill中的所有刚体环境均在完全许可的许可证(例如Apache-2.0)下授权。

资产在CC BY-NC 4.0许可下授权。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多