QueryInst

QueryInst

简洁高效的实例分割策略

QueryInst是一种由动态掩码头并行监督驱动的查询实例分割方法,在准确性和速度上具有显著优势。该项目涵盖对象检测、实例分割和视频实例分割等多种实例级别识别任务,并提供详细的功能介绍和模型训练指导。目前本项目仍在积极开发中,计划扩展至更多实例级别识别任务。

QueryInst实例分割mmdetectionCOCO数据集目标检测Github开源项目

项目介绍:QueryInst

概述

QueryInst 是一种基于查询的实例分割方法,其设计通过动态掩码头的平行监督驱动。该方法的突出特点是其简洁性与高效性,在准确性和速度上均超越了以往的技术。QueryInst 在2021年的国际计算机视觉会议(ICCV 2021)中正式亮相,并迅速成为实例分割任务中的热门工具。项目基于 mmdetection 开发,后继续于 Cityscapes 和 YouTube-VIS 等拓展。

项目的关键特点

  1. 创新的方法

    • QueryInst 提出了将实例视作查询的新思路,使得实例识别任务与传统方法相比在性能上更具竞争力。
    • 这种方法特别在大规模视频对象分割挑战赛中表现出色,以单模型、单尺度测试解决方案取得第二名。
  2. 性能表现

    • QueryInst 在多个对象识别任务中展示出优异的性能,包括对象检测、实例分割和视频实例分割。
    • 项目提供了多种配置文件,用户可以根据需求选择合适的模型进行训练与测试。
  3. 灵活的实现

    • QueryInst 同时支持多GPU以及单GPU训练和测试,方便不同计算资源条件的开发者使用。
    • 该项目支持基于 Swin-Transformer 和 Test-Time-Augmentation 的特性,进一步提升模型的效果。

实验结果

在 COCO 数据集上的测试中,QueryInst 各种配置都显示出色的表现,比如在使用 Swin_Large 的配置下,单模型、单尺度测试下的 Box AP 达到了 56.1,而 Mask AP 则为 49.1。

快速上手

  1. 安装

    • QueryInst 建立在 mmdetection 工具箱之上,用户需先行安装 mmdetection。
    • 使用 python setup.py develop 来安装 QueryInst。
  2. 数据准备

    • 创建并进入数据目录后,链接到 COCO 数据集合适路径。
  3. 训练与测试

    • 单 GPU 训练:python tools/train.py [CONFIG_PATH]
    • 多 GPU 训练:./tools/dist_train.sh [CONFIG_PATH] [NUM_GPUS]
    • 单 GPU 测试:python tools/test.py [CONFIG_PATH] [CHECKPOINT_PATH] --eval bbox segm
    • 多 GPU 测试:./tools/dist_test.sh [CONFIG_PATH] [CHECKPOINT_PATH] [NUM_GPUS] --eval bbox segm

开发计划

该项目正在积极扩展中,目前已包括 Swin-Transformer 和预训练权重等功能,即将推出的是针对 Cityscapes 和 YouTube-VIS 的配置。

引用

如果您觉得 QueryInst 对您的研究或项目有帮助,可以引用以下的论文:

@InProceedings{Fang_2021_ICCV, author = {Fang, Yuxin and Yang, Shusheng and Wang, Xinggang and Li, Yu and Fang, Chen and Shan, Ying and Feng, Bin and Liu, Wenyu}, title = {Instances As Queries}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {6910-6919} } @article{QueryTrack, title={Tracking Instances as Queries}, author={Yang, Shusheng and Fang, Yuxin and Wang, Xinggang and Li, Yu and Shan, Ying and Feng, Bin and Liu, Wenyu}, journal={arXiv preprint arXiv:2106.11963}, year={2021} }

随着技术的不断发展,相信 QueryInst 会在实例识别领域继续带来更多的创新和惊喜。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多