Larq计算引擎(LCE)是一个经过高度优化的推理引擎,用于部署极度量化的神经网络,如二进制神经网络(BNNs)。它目前支持各种移动平台,并已在Pixel 1手机和树莓派上进行了基准测试。LCE提供了一系列手工优化的TensorFlow Lite自定义操作符,适用于支持的指令集,采用内联汇编或使用编译器内在函数的C++开发。LCE利用优化技术,如分块以最大化缓存命中数、矢量化以最大化计算吞吐量,以及多线程并行化以利用多核现代台式机和移动CPU。
Larq计算引擎是BNN开发系列库的一部分;您还可以查看Larq用于构建和训练BNNs,以及Larq Zoo用于预训练模型。
无缝端到端集成从训练到部署:
LCE与Larq和TensorFlow的紧密集 成提供了顺畅的端到端训练和部署体验。
Larq Zoo中提供了一系列Larq预训练的BNN模型,可用于常见的机器学习任务。
LCE提供了一个自定义的基于MLIR的模型转换器,完全兼容TensorFlow Lite,并为Larq模型执行额外的网络级优化。
闪电般的部署在各种移动平台上:
LCE通过提供手工优化的内核和针对BNN模型的网络级优化,实现了高性能的设备内机器学习推理。
LCE目前支持基于64位ARM的移动平台,如Android手机和树莓派板。
LCE中的线程并行支持对于具有多核CPU的现代移动设备至关重要。
下表展示了Larq计算引擎在不同版本的名为QuickNet的新颖BNN模型(在ImageNet数据集上训练,发布在Larq Zoo)上的单线程性能,在Raspberry Pi 4 Model B 1.5GHz (BCM2711)板、Pixel 1 Android手机(2016)和搭载M1 ARM CPU的Mac Mini上进行了测试: 以下是英文到中文的翻译:
模型 | 最高1准确率 | RPi 4B 1.5GHz, 1线程 (毫秒) | Pixel 1, 1线程 (毫秒) | Mac Mini M1, 1线程 (毫秒) |
---|---|---|---|---|
QuickNetSmall | 59.4% | 27.7 | 16.8 | 4.0 |
QuickNet | 63.3% | 45.0 | 25.5 | 5.8 |
QuickNetLarge | 66.9% | 77.0 | 44.2 | 9.9 |
作为参考,另一个主要的BNN库dabnn在Pixel 1手机上报告了Bi-RealNet(56.4%准确率)的推理时间为61.3毫秒,而LCE在同一设备上实现了Bi-RealNet的41.6毫秒推理时间。此外,他们还提出了一个修改版本BiRealNet-Stem,在43.2毫秒内实现了同样的56.4%准确率。
下表展示了Larq Compute Engine在Pixel 1手机和1.5GHz树莓派4 Model B (BCM2711)上的多线程性能:
模型 | 最高1准确率 | RPi 4B 1.5GHz, 4线程 (毫秒) | Pixel 1, 4线程 (毫秒) | Mac Mini M1, 4线程 (毫秒) |
---|---|---|---|---|
QuickNetSmall | 59.4% | 12.1 | 8.9 | 1.8 |
QuickNet | 63.3% | 20.8 | 12.6 | 2.5 |
QuickNetLarge | 66.9% | 31.7 | 22.8 | 3.9 |
基于2021-06-11(Pixel 1)、2021-06-13(Mac Mini M1)和2022-04-20(RPi 4B)使用LCE定制的TFLite模型基准测试工具(参见此处)进行基准测试,启用了XNNPack,并使用随机输入的BNN模型。
按照以下步骤部署BNN with LCE:
选择一个Larq模型
转换Larq模型
LCE基于TensorFlow Lite构建,使用TensorFlow Lite的FlatBuffer格式来转换和序列化Larq模型以进行推理。我们提供了一个LCE转换器,具有额外的优化步骤,以提高Larq模型在支持的目标平台上的执行速度。
构建LCE
LCE文档提供了Android和64位ARM基板(如树莓派)的构建说明。请按照提供的说明创建本地LCE构建或为其中一个支持的目标进行交叉编译。
运行推理
LCE使用TensorFlow Lite解释器来执行推理。除了已有的TensorFlow Lite操作符外,优化的LCE操作符也注册到解释器中,以执行模型中的Larq特定子图。一个示例,用于为您自己的应用创建和构建兼容LCE的TensorFlow Lite解释器,可在此处找到。
Larq Compute Engine由Plumerai的一个深度学习研究和工程团队开发,旨在加速我们自己的研究和二进制神经网络的普及。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容 ,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱 图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号