mixture-of-experts

mixture-of-experts

稀疏门控专家混合模型的Pytorch实现

基于Pytorch实现的稀疏门控专家混合模型,可以在保持计算量不变的情况下大幅增加语言模型的参数量。项目参考了TensorFlow的实现,并进行了增强。还包含ST Mixture of Experts的使用指南,安装和使用示例,以及自定义专家网络的支持。

Sparsely Gated Mixture of ExpertsPytorch语言模型计算参数Github开源项目

Mixture of Experts 项目介绍

项目概况

Mixture of Experts(MoE)是一个基于Pytorch框架的项目,旨在通过稀疏门控技术(Sparsely Gated)大幅提高语言模型的参数容量,同时保持计算量不变。该项目主要是对Tensorflow实现版本的逐行转换,并加以若干增强。项目推介使用ST Mixture of Experts作为其延续和更新。

安装指南

用户可以通过如下简单的命令安装Mixture of Experts:

$ pip install mixture_of_experts

使用方法

用户可以通过以下简单的Python代码来实现MoE模型:

import torch from torch import nn from mixture_of_experts import MoE moe = MoE( dim = 512, num_experts = 16, hidden_dim = 512 * 4, activation = nn.LeakyReLU, second_policy_train = 'random', second_policy_eval = 'random', second_threshold_train = 0.2, second_threshold_eval = 0.2, capacity_factor_train = 1.25, capacity_factor_eval = 2., loss_coef = 1e-2 ) inputs = torch.randn(4, 1024, 512) out, aux_loss = moe(inputs)

这些设置足以在单台机器上运行,但如果需要实现一个两级分层专家模型,可以参考以下代码:

import torch from mixture_of_experts import HeirarchicalMoE moe = HeirarchicalMoE( dim = 512, num_experts = (4, 4) ) inputs = torch.randn(4, 1024, 512) out, aux_loss = moe(inputs)

实现更大规模参数模型

用户还可以通过调整专家数量来实现更复杂的模型,例如一个具有10亿参数的网络:

import torch from mixture_of_experts import HeirarchicalMoE moe = HeirarchicalMoE( dim = 512, num_experts = (22, 22) ).cuda() inputs = torch.randn(1, 1024, 512).cuda() out, aux_loss = moe(inputs) total_params = sum(p.numel() for p in moe.parameters()) print(f'number of parameters - {total_params}')

自定义专家网络

如果用户希望为模型定义更复杂的专家网络,那么可以创建自己的网络,并将其传递给MoE类:

import torch from torch import nn from mixture_of_experts import MoE class Experts(nn.Module): def __init__(self, dim, num_experts = 16): super().__init__() self.w1 = nn.Parameter(torch.randn(num_experts, dim, dim * 4)) self.w2 = nn.Parameter(torch.randn(num_experts, dim * 4, dim * 4)) self.w3 = nn.Parameter(torch.randn(num_experts, dim * 4, dim)) self.act = nn.LeakyReLU(inplace = True) def forward(self, x): hidden1 = self.act(torch.einsum('end,edh->enh', x, self.w1)) hidden2 = self.act(torch.einsum('end,edh->enh', hidden1, self.w2)) out = torch.einsum('end,edh->enh', hidden2, self.w3) return out experts = Experts(512, num_experts = 16) moe = MoE( dim = 512, num_experts = 16, experts = experts ) inputs = torch.randn(4, 1024, 512) out, aux_loss = moe(inputs)

通过这种方式,用户可以根据具体需求调整和优化模型,以适应不同的应用场景和研究方向。

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多