Project Icon

mixture-of-experts

稀疏门控专家混合模型的Pytorch实现

基于Pytorch实现的稀疏门控专家混合模型,可以在保持计算量不变的情况下大幅增加语言模型的参数量。项目参考了TensorFlow的实现,并进行了增强。还包含ST Mixture of Experts的使用指南,安装和使用示例,以及自定义专家网络的支持。

Mixture of Experts 项目介绍

项目概况

Mixture of Experts(MoE)是一个基于Pytorch框架的项目,旨在通过稀疏门控技术(Sparsely Gated)大幅提高语言模型的参数容量,同时保持计算量不变。该项目主要是对Tensorflow实现版本的逐行转换,并加以若干增强。项目推介使用ST Mixture of Experts作为其延续和更新。

安装指南

用户可以通过如下简单的命令安装Mixture of Experts:

$ pip install mixture_of_experts

使用方法

用户可以通过以下简单的Python代码来实现MoE模型:

import torch
from torch import nn
from mixture_of_experts import MoE

moe = MoE(
    dim = 512,
    num_experts = 16,
    hidden_dim = 512 * 4,
    activation = nn.LeakyReLU,
    second_policy_train = 'random',
    second_policy_eval = 'random',
    second_threshold_train = 0.2,
    second_threshold_eval = 0.2,
    capacity_factor_train = 1.25,
    capacity_factor_eval = 2.,
    loss_coef = 1e-2
)

inputs = torch.randn(4, 1024, 512)
out, aux_loss = moe(inputs)

这些设置足以在单台机器上运行,但如果需要实现一个两级分层专家模型,可以参考以下代码:

import torch
from mixture_of_experts import HeirarchicalMoE

moe = HeirarchicalMoE(
    dim = 512,
    num_experts = (4, 4)
)

inputs = torch.randn(4, 1024, 512)
out, aux_loss = moe(inputs)

实现更大规模参数模型

用户还可以通过调整专家数量来实现更复杂的模型,例如一个具有10亿参数的网络:

import torch
from mixture_of_experts import HeirarchicalMoE

moe = HeirarchicalMoE(
    dim = 512,
    num_experts = (22, 22)
).cuda()

inputs = torch.randn(1, 1024, 512).cuda()
out, aux_loss = moe(inputs)

total_params = sum(p.numel() for p in moe.parameters())
print(f'number of parameters - {total_params}')

自定义专家网络

如果用户希望为模型定义更复杂的专家网络,那么可以创建自己的网络,并将其传递给MoE类:

import torch
from torch import nn
from mixture_of_experts import MoE

class Experts(nn.Module):
    def __init__(self, dim, num_experts = 16):
        super().__init__()
        self.w1 = nn.Parameter(torch.randn(num_experts, dim, dim * 4))
        self.w2 = nn.Parameter(torch.randn(num_experts, dim * 4, dim * 4))
        self.w3 = nn.Parameter(torch.randn(num_experts, dim * 4, dim))
        self.act = nn.LeakyReLU(inplace = True)

    def forward(self, x):
        hidden1 = self.act(torch.einsum('end,edh->enh', x, self.w1))
        hidden2 = self.act(torch.einsum('end,edh->enh', hidden1, self.w2))
        out = torch.einsum('end,edh->enh', hidden2, self.w3)
        return out

experts = Experts(512, num_experts = 16)

moe = MoE(
    dim = 512,
    num_experts = 16,
    experts = experts
)

inputs = torch.randn(4, 1024, 512)
out, aux_loss = moe(inputs)

通过这种方式,用户可以根据具体需求调整和优化模型,以适应不同的应用场景和研究方向。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号