Awesome-Hyperbolic-Representation-and-Deep-Learning

Awesome-Hyperbolic-Representation-and-Deep-Learning

双曲空间表示学习和深度学习研究资源集锦

本项目整理了双曲空间表示学习和深度学习领域的前沿研究成果。内容涵盖基础理论和实际应用,包括双曲浅层模型、双曲神经网络和双曲图神经网络等方法,以及在推荐系统、知识图谱等方面的应用。项目将相关论文进行分类整理,为研究人员提供便捷的学习资源,促进该领域的发展。

双曲空间图表示学习神经网络图神经网络深度学习Github开源项目

Awesome Stars Forks

Introduction

Recently, hyperbolic spaces have emerged as a promising alternative for processing data with a tree-like structure or power-law distribution, owing to its exponential growth property and tree-likeness prior. Different from the Euclidean space, which expands polynomially, the hyperbolic space grows exponentially which makes it gain natural advantages in abstracting tree-like or scale-free data with hierarchical organizations. In this repository, we categorize papers related to hyperbolic representation learning into different types to facilitate researcher studies and to promote the development of the community. We will keep updating this repository with the latest research developments. We are aware that there will inevitably be some mistakes and oversights, so if you have any questions or suggestions, please feel free to contact us (menglin.yang[@]outlook.com).

<table> <tr><td colspan="2"><a href="#latest-update", p style="color:#B22222">1. Lastest Update</a></td></tr> <tr><td colspan="2"><a href="#surveys-books-tools-tutorials", p style="color:#B22222">2. Surveys, Books, Tools and Tutorials</a></td></tr> <tr> <td>&ensp;<a href="#surveys">2.1 Surveys</a></td> <td>&ensp;<a href="#books">2.2 Books </a></td> </tr> <tr> <td>&ensp;<a href="#tools">2.3 Tools </a></td> <td>&ensp;<a href="#tutorials">2.4 Tutorials</a></td> </tr> <tr><td colspan="2"><a href="#methods-and-models", p style="color:#B22222">3. Methods and Models</a></td></tr> <tr> <td>&ensp;<a href="#hyperbolic-shallow-model">3.1 Hyperbolic Shallow Model</a></td> <td>&ensp;<a href="#hyperbolic-neural-network">3.2 Hyperbolic Neural Network</a></td> </tr> <tr> <td>&ensp;<a href="#hyperbolic-graph-neural-network">3.3 Hyperbolic Graph Neural Network</a></td> <td>&ensp;<a href="#mixed-curvature-learning">3.4 Mixed Curvature Learning</a></td> </tr> <tr> <td>&ensp;<a href="#ultrahyperbolic-learning">3.5 Ultrahyperbolic Learning</a></td> <td>&ensp;<a href="#hyperbolic-operations">3.6 Hyperbolic Operations</a></td> </tr> <tr> <td>&ensp;<a href="#hyperbolic-generation-models">3.7 Hyperbolic Generation Models</a></td> <td>&ensp;<a href="#llm-and-hyperbolic-space">3.8 LLM && Hyperbolic Space</a></td> </tr> <tr><td colspan="2"><a href="#applications", p style="color:#B22222">4. Applications</a></td></tr> <tr> <td>&ensp;<a href="#recommender-systems">4.1 Recommender Systems</a></td> <td>&ensp;<a href="#knowledge-graphs">4.2 Knowledge Graphs</a></td> </tr> <tr> <td>&ensp;<a href="#molecular-learning">4.3 Molecular Learning </a></td> <td>&ensp;<a href="#dynamic-graphs">4.4 Dynamic Graphs</a></td> </tr> <tr> <td>&ensp;<a href="#code-representation">4.5 Code Representation</a></td> <td>&ensp;<a href="#graph-embeddings">4.6 Graph Embedding</a></td> </tr> <tr> <td>&ensp;<a href="#word-embeddings">4.7 Word Embedding</a></td> <td>&ensp;<a href="#multi-label-learning">4.8 Multi-label Learning</a></td> </tr> <tr> <td>&ensp;<a href="#computer-vision">4.9 Computer Vision</a></td> <td>&ensp;<a href="#natural-language-processing">4.10 Natural Language Processing</a></td> </tr> </table>

Hyperbolic Slack Group

✨New❗️(July 4, 2024)

  1. Hypformer: Exploring Efficient Hyperbolic Transformer Fully in Hyperbolic Space, KDD 2024

  2. Hyperbolicity Measures “Democracy” in Real-World Networks, Phys. Rev. E 2015

  3. The Numerical Stability of Hyperbolic Representation Learning, ICML 2023

  4. Fully Hyperbolic Convolutional Neural Networks for Computer Vision, ICLR 2024

  5. The Dark Side of the Hyperbolic Moon, ICLR 2024

  6. Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design, ICLR 2024

  7. Fast Hyperboloid Decision Tree Algorithms, ICLR 2024

  8. Ultra-sparse network advantage in deep learning via Cannistraci-Hebb brain-inspired training with hyperbolic meta-deep community-layered epitopology, ICLR 2024

  9. Matrix Manifold Neural Networks++, ICLR 2024

  10. Hyperbolic VAE via Latent Gaussian Distributions, NeurIPS 2023
    Seunghyuk Cho, Juyong Lee, Dongwoo Kim

  11. Hyperbolic Space with Hierarchical Margin Boosts Fine-Grained Learning from Coarse Labels, NeurIPS, 2023
    Shu-Lin Xu, Yifan Sun, Faen Zhang, Anqi Xu, Xiu-Shen Wei, Yi Yang

  12. Hyperbolic Graph Neural Networks at Scale: A Meta Learning Approach, NeurIPS 2023
    Nurendra Choudhary, Nikhil Rao, Chandan K. Reddy

  13. Fitting trees to $\ell_1$-hyperbolic distances, NeurIPS 2023
    Joon-Hyeok Yim, Anna Gilbert

  14. Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design, arxiv 2023
    Heng Dong, Junyu Zhang, Chongjie Zhang

  15. Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive Learning, arxiv 2023
    Yifei Zhang, Hao Zhu, Jiahong Liu, Piotr Koniusz, Irwin King

  16. Riemannian Residual Neural Networks, arxiv 2023
    Isay Katsman, Eric Ming Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser-Nam Lim, Christopher De Sa

  17. Tempered Calculus for ML: Application to Hyperbolic Model Embedding, arxiv 2024
    Richard Nock, Ehsan Amid, Frank Nielsen, Alexander Soen, Manfred K. Warmuth

Surveys, Books, Tools, Tutorials

Surveys

  1. Hyperbolic Deep Learning in Computer Vision: A Survey, arxiv 2023
    Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, Serena Yeung

  2. Hyperbolic Graph Neural Networks: A Review of Methods and Application, arxiv 2022. GitHub
    Menglin Yang, Min Zhou, Zhihao Li, Jiahong Liu, Lujia Pan, Hui Xiong, Irwin King

  3. Hyperbolic Deep Neural Networks: A Survey, TPAMI 2022. GitHub
    Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, Guoying Zhao

  4. Hyperbolic Geometry in Computer Vision: A Survey, arxiv 2023.
    Pengfei Fang, Mehrtash Harandi, Trung Le, Dinh Phung

Books

  1. An Introduction to Geometric Topology, 2022
    Bruno Martelli

  2. Hyperbolic Geometry, 2020.
    Brice Loustau

  3. Manifolds and Differential Geometry, 2009.
    Jeffrey M. Lee

  4. Introduction to Hyperbolic Geometry, 1995.
    A Ramsay, RD Richtmyer

Tools

  1. Geoopt: Riemannian Adaptive Optimization Methods ICLR 2019
    Max Kochurov and Rasul Karimov and Serge Kozlukov

  2. Curvature Learning Framework
    Alibaba

  3. GraphZoo: A Development Toolkit for Graph Neural Networks with Hyperbolic Geometries WWW 2022
    Anoushka Vyas, Nurendra Choudhary, Mehrdad Khatir, Chandan K. Reddy

  4. HypLL: The Hyperbolic Learning Library, GitHub
    Max van Spengler, Philipp Wirth, Pascal Mettes

Tutorials

  1. Hyperbolic Deep Learning for Computer Vision
    Pascal Mettes, Max van Spengler, Yunhui Guo, Stella Yu

  2. Hyperbolic networks: Theory, Architecture and Applications
    Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Srinivasan H. Sengamedu, Chandan Reddy

  3. Hyperbolic Graph Neural Networks: A Tutorial on Methods and Applications, KDD 2023
    Min Zhou, Menglin Yang, Bo Xiong, Hui Xiong, Irwin King

  4. Hyperbolic Representation Learning for Computer Vision. Tutorial 2022
    Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, Serena Yeung@ECCV2022
    https://hyperbolic-representation-learning.readthedocs.io/en/latest/

  5. Hyperbolic Graph Representation Learning. Tutorial 2022
    Min Zhou, Menglin Yang, Lujia Pan, Irwin King @ ECML-PKDD 2022

  6. Hyperbolic Neural Network. Tutorial 2022
    Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Srinivasan Sengamedu, Chandan Reddy @ KDD 2022

  7. Hyperbolic Hyperbolic embeddings in machine learning and deep learning. Tutorial 2020
    Octavian Ganea 2020.

Methods and Models

Hyperbolic Shallow Model

  1. Poincaré Embeddings for Learning Hierarchical Representations, NeurIPS 2017
    Maximilian Nickel, Douwe Kiela

  2. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry, ICML 2018
    Maximilian Nickel, Douwe Kiela

  3. Representation Tradeoffs for Hyperbolic Embeddings, ICML 2018
    Frederic Sala, Christopher De Sa, Albert Gu, Christopher Re´

  4. Hyperbolic Entailment Cones for Learning Hierarchical Embeddings, ICML 2018
    Octavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann

  5. Lorentzian Distance Learning for Hyperbolic Representations, ICML 2019
    Marc T. Law, Renjie Liao, Jake Snell, Richard S. Zemel

  6. Hyperbolic Disk Embeddings for Directed Acyclic Graphs, ICML 2019
    Ryota Suzuki, Ryusuke Takahama, Shun Onoda

Hyperbolic Neural Network

  1. Hyperbolic Neural Networks, NeurIPS 2018
    Octavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann

  2. Hyperbolic Attention Networks, ICLR 2019
    Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, Nando de Freitas

  3. Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders, NeurIPS 2019
    Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, Yee Whye Teh

  4. Hyperbolic Neural Network++, ICLR 2021
    Ryohei Shimizu, Yusuke Mukuta, Tatsuya Harada

  5. Fully Hyperbolic Neural Networks, ACL 2022
    Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, Jie Zhou

  6. Poincaré ResNet, arxiv 2023
    Max van Spengler, Erwin Berkhout, Pascal Mettes

  7. Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design, CVPR 2022
    Xiran Fan, Chun-Hao Yang, Baba C. Vemuri

  8. Hypformer: Exploring Efficient Hyperbolic Transformer Fully in Hyperbolic Space, KDD 2024
    Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, Rex Ying

Hyperbolic Graph Neural Network

  1. [Hyperbolic

编辑推荐精选

Manus

Manus

全面超越基准的 AI Agent助手

Manus 是一款通用人工智能代理平台,能够将您的创意和想法迅速转化为实际成果。无论是定制旅行规划、深入的数据分析,还是教育支持与商业决策,Manus 都能高效整合信息,提供精准解决方案。它以直观的交互体验和领先的技术,为用户开启了一个智慧驱动、轻松高效的新时代,让每个灵感都能得到完美落地。

飞书知识问答

飞书知识问答

飞书官方推出的AI知识库 上传word pdf即可部署AI私有知识库

基于DeepSeek R1大模型构建的知识管理系统,支持PDF、Word、PPT等常见文档格式解析,实现云端与本地数据的双向同步。系统具备实时网络检索能力,可自动关联外部信息源,通过语义理解技术处理结构化与非结构化数据。免费版本提供基础知识库搭建功能,适用于企业文档管理和个人学习资料整理场景。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

TraeAI IDE协作生产力转型热门AI工具
酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

使用教程AI工具酷表ChatExcelAI智能客服AI营销产品
DeepEP

DeepEP

DeepSeek开源的专家并行通信优化框架

DeepEP是一个专为大规模分布式计算设计的通信库,重点解决专家并行模式中的通信瓶颈问题。其核心架构采用分层拓扑感知技术,能够自动识别节点间物理连接关系,优化数据传输路径。通过实现动态路由选择与负载均衡机制,系统在千卡级计算集群中维持稳定的低延迟特性,同时兼容主流深度学习框架的通信接口。

DeepSeek

DeepSeek

全球领先开源大模型,高效智能助手

DeepSeek是一家幻方量化创办的专注于通用人工智能的中国科技公司,主攻大模型研发与应用。DeepSeek-R1是开源的推理模型,擅长处理复杂任务且可免费商用。

KnowS

KnowS

AI医学搜索引擎 整合4000万+实时更新的全球医学文献

医学领域专用搜索引擎整合4000万+实时更新的全球医学文献,通过自主研发AI模型实现精准知识检索。系统每日更新指南、中英文文献及会议资料,搜索准确率较传统工具提升80%,同时将大模型幻觉率控制在8%以下。支持临床建议生成、文献深度解析、学术报告制作等全流程科研辅助,典型用户反馈显示每周可节省医疗工作者70%时间。

Windsurf Wave 3

Windsurf Wave 3

Windsurf Editor推出第三次重大更新Wave 3

新增模型上下文协议支持与智能编辑功能。本次更新包含五项核心改进:支持接入MCP协议扩展工具生态,Tab键智能跳转提升编码效率,Turbo模式实现自动化终端操作,图片拖拽功能优化多模态交互,以及面向付费用户的个性化图标定制。系统同步集成DeepSeek、Gemini等新模型,并通过信用点数机制实现差异化的资源调配。

AI IDE
腾讯元宝

腾讯元宝

腾讯自研的混元大模型AI助手

腾讯元宝是腾讯基于自研的混元大模型推出的一款多功能AI应用,旨在通过人工智能技术提升用户在写作、绘画、翻译、编程、搜索、阅读总结等多个领域的工作与生活效率。

AI 办公助手AI对话AI助手AI工具腾讯元宝智能体热门
Grok3

Grok3

埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型

Grok3 是由埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型,常被马斯克称为“地球上最聪明的 AI”。它不仅是在前代产品 Grok 1 和 Grok 2 基础上的一次飞跃,还在多个关键技术上实现了创新突破。

下拉加载更多