Project Icon

Awesome-Hyperbolic-Representation-and-Deep-Learning

双曲空间表示学习和深度学习研究资源集锦

本项目整理了双曲空间表示学习和深度学习领域的前沿研究成果。内容涵盖基础理论和实际应用,包括双曲浅层模型、双曲神经网络和双曲图神经网络等方法,以及在推荐系统、知识图谱等方面的应用。项目将相关论文进行分类整理,为研究人员提供便捷的学习资源,促进该领域的发展。

Awesome Stars Forks

Introduction

Recently, hyperbolic spaces have emerged as a promising alternative for processing data with a tree-like structure or power-law distribution, owing to its exponential growth property and tree-likeness prior. Different from the Euclidean space, which expands polynomially, the hyperbolic space grows exponentially which makes it gain natural advantages in abstracting tree-like or scale-free data with hierarchical organizations. In this repository, we categorize papers related to hyperbolic representation learning into different types to facilitate researcher studies and to promote the development of the community. We will keep updating this repository with the latest research developments. We are aware that there will inevitably be some mistakes and oversights, so if you have any questions or suggestions, please feel free to contact us (menglin.yang[@]outlook.com).

Hyperbolic Slack Group

✨New❗️(July 4, 2024)

  1. Hypformer: Exploring Efficient Hyperbolic Transformer Fully in Hyperbolic Space, KDD 2024

  2. Hyperbolicity Measures “Democracy” in Real-World Networks, Phys. Rev. E 2015

  3. The Numerical Stability of Hyperbolic Representation Learning, ICML 2023

  4. Fully Hyperbolic Convolutional Neural Networks for Computer Vision, ICLR 2024

  5. The Dark Side of the Hyperbolic Moon, ICLR 2024

  6. Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design, ICLR 2024

  7. Fast Hyperboloid Decision Tree Algorithms, ICLR 2024

  8. Ultra-sparse network advantage in deep learning via Cannistraci-Hebb brain-inspired training with hyperbolic meta-deep community-layered epitopology, ICLR 2024

  9. Matrix Manifold Neural Networks++, ICLR 2024

  10. Hyperbolic VAE via Latent Gaussian Distributions, NeurIPS 2023
    Seunghyuk Cho, Juyong Lee, Dongwoo Kim

  11. Hyperbolic Space with Hierarchical Margin Boosts Fine-Grained Learning from Coarse Labels, NeurIPS, 2023
    Shu-Lin Xu, Yifan Sun, Faen Zhang, Anqi Xu, Xiu-Shen Wei, Yi Yang

  12. Hyperbolic Graph Neural Networks at Scale: A Meta Learning Approach, NeurIPS 2023
    Nurendra Choudhary, Nikhil Rao, Chandan K. Reddy

  13. Fitting trees to $\ell_1$-hyperbolic distances, NeurIPS 2023
    Joon-Hyeok Yim, Anna Gilbert

  14. Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design, arxiv 2023
    Heng Dong, Junyu Zhang, Chongjie Zhang

  15. Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive Learning, arxiv 2023
    Yifei Zhang, Hao Zhu, Jiahong Liu, Piotr Koniusz, Irwin King

  16. Riemannian Residual Neural Networks, arxiv 2023
    Isay Katsman, Eric Ming Chen, Sidhanth Holalkere, Anna Asch, Aaron Lou, Ser-Nam Lim, Christopher De Sa

  17. Tempered Calculus for ML: Application to Hyperbolic Model Embedding, arxiv 2024
    Richard Nock, Ehsan Amid, Frank Nielsen, Alexander Soen, Manfred K. Warmuth

Surveys, Books, Tools, Tutorials

Surveys

  1. Hyperbolic Deep Learning in Computer Vision: A Survey, arxiv 2023
    Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, Serena Yeung

  2. Hyperbolic Graph Neural Networks: A Review of Methods and Application, arxiv 2022. GitHub
    Menglin Yang, Min Zhou, Zhihao Li, Jiahong Liu, Lujia Pan, Hui Xiong, Irwin King

  3. Hyperbolic Deep Neural Networks: A Survey, TPAMI 2022. GitHub
    Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, Guoying Zhao

  4. Hyperbolic Geometry in Computer Vision: A Survey, arxiv 2023.
    Pengfei Fang, Mehrtash Harandi, Trung Le, Dinh Phung

Books

  1. An Introduction to Geometric Topology, 2022
    Bruno Martelli

  2. Hyperbolic Geometry, 2020.
    Brice Loustau

  3. Manifolds and Differential Geometry, 2009.
    Jeffrey M. Lee

  4. Introduction to Hyperbolic Geometry, 1995.
    A Ramsay, RD Richtmyer

Tools

  1. Geoopt: Riemannian Adaptive Optimization Methods ICLR 2019
    Max Kochurov and Rasul Karimov and Serge Kozlukov

  2. Curvature Learning Framework
    Alibaba

  3. GraphZoo: A Development Toolkit for Graph Neural Networks with Hyperbolic Geometries WWW 2022
    Anoushka Vyas, Nurendra Choudhary, Mehrdad Khatir, Chandan K. Reddy

  4. HypLL: The Hyperbolic Learning Library, GitHub
    Max van Spengler, Philipp Wirth, Pascal Mettes

Tutorials

  1. Hyperbolic Deep Learning for Computer Vision
    Pascal Mettes, Max van Spengler, Yunhui Guo, Stella Yu

  2. Hyperbolic networks: Theory, Architecture and Applications
    Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Srinivasan H. Sengamedu, Chandan Reddy

  3. Hyperbolic Graph Neural Networks: A Tutorial on Methods and Applications, KDD 2023
    Min Zhou, Menglin Yang, Bo Xiong, Hui Xiong, Irwin King

  4. Hyperbolic Representation Learning for Computer Vision. Tutorial 2022
    Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, Serena Yeung@ECCV2022
    https://hyperbolic-representation-learning.readthedocs.io/en/latest/

  5. Hyperbolic Graph Representation Learning. Tutorial 2022
    Min Zhou, Menglin Yang, Lujia Pan, Irwin King @ ECML-PKDD 2022

  6. Hyperbolic Neural Network. Tutorial 2022
    Nurendra Choudhary, Nikhil Rao, Karthik Subbian, Srinivasan Sengamedu, Chandan Reddy @ KDD 2022

  7. Hyperbolic Hyperbolic embeddings in machine learning and deep learning. Tutorial 2020
    Octavian Ganea 2020.

Methods and Models

Hyperbolic Shallow Model

  1. Poincaré Embeddings for Learning Hierarchical Representations, NeurIPS 2017
    Maximilian Nickel, Douwe Kiela

  2. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry, ICML 2018
    Maximilian Nickel, Douwe Kiela

  3. Representation Tradeoffs for Hyperbolic Embeddings, ICML 2018
    Frederic Sala, Christopher De Sa, Albert Gu, Christopher Re´

  4. Hyperbolic Entailment Cones for Learning Hierarchical Embeddings, ICML 2018
    Octavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann

  5. Lorentzian Distance Learning for Hyperbolic Representations, ICML 2019
    Marc T. Law, Renjie Liao, Jake Snell, Richard S. Zemel

  6. Hyperbolic Disk Embeddings for Directed Acyclic Graphs, ICML 2019
    Ryota Suzuki, Ryusuke Takahama, Shun Onoda

Hyperbolic Neural Network

  1. Hyperbolic Neural Networks, NeurIPS 2018
    Octavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann

  2. Hyperbolic Attention Networks, ICLR 2019
    Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, Nando de Freitas

  3. Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders, NeurIPS 2019
    Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, Yee Whye Teh

  4. Hyperbolic Neural Network++, ICLR 2021
    Ryohei Shimizu, Yusuke Mukuta, Tatsuya Harada

  5. Fully Hyperbolic Neural Networks, ACL 2022
    Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, Jie Zhou

  6. Poincaré ResNet, arxiv 2023
    Max van Spengler, Erwin Berkhout, Pascal Mettes

  7. Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design, CVPR 2022
    Xiran Fan, Chun-Hao Yang, Baba C. Vemuri

  8. Hypformer: Exploring Efficient Hyperbolic Transformer Fully in Hyperbolic Space, KDD 2024
    Menglin Yang, Harshit Verma, Delvin Ce Zhang, Jiahong Liu, Irwin King, Rex Ying

Hyperbolic Graph Neural Network

  1. [Hyperbolic
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号