Project Icon

hi-ml

医疗和生命科学深度学习研究智能工具包

hi-ml是一个面向医疗和生命科学领域的机器学习工具包,提供经过测试的组件、深度学习模型和云集成工具。该项目包含hi-ml-azure用于AzureML集成、hi-ml提供ML组件,以及hi-ml-cpath用于处理组织病理学图像。这些工具旨在简化深度学习模型的开发流程,适用于该领域的研究人员和从业者。

Microsoft Health Intelligence Machine Learning Toolbox

Codecov coverage Code style: black

Overview

This toolbox aims at providing low-level and high-level building blocks for Machine Learning / AI researchers and practitioners. It helps to simplify and streamline work on deep learning models for healthcare and life sciences, by providing tested components (data loaders, pre-processing), deep learning models, and cloud integration tools.

This repository consists of two Python packages, as well as project-specific codebases:

  • PyPi package hi-ml-azure - providing helper functions for running in AzureML.
  • PyPi package hi-ml - providing ML components.
  • hi-ml-cpath: Models and workflows for working with histopathology images

Getting started

For the full toolbox (this will also install hi-ml-azure):

  • Install from pypi via pip, by running pip install hi-ml

For just the AzureML helper functions:

  • Install from pypi via pip, by running pip install hi-ml-azure

For the histopathology workflows, please follow the instructions here.

If you would like to contribute to the code, please check the developer guide.

Documentation

The detailed package documentation, with examples and API reference, is on readthedocs.

Quick start: Using the Azure layer

Use case: you have a Python script that does something - that could be training a model, or pre-processing some data. The hi-ml-azure package can help easily run that on Azure Machine Learning (AML) services.

Here is an example script that reads images from a folder, resizes and saves them to an output folder:

from pathlib import Path
if __name__ == '__main__':
    input_folder = Path("/tmp/my_dataset")
    output_folder = Path("/tmp/my_output")
    for file in input_folder.glob("*.jpg"):
        contents = read_image(file)
        resized = contents.resize(0.5)
        write_image(output_folder / file.name)

Doing that at scale can take a long time. We'd like to run that script in AzureML, consume the data from a folder in blob storage, and write the results back to blob storage.

With the hi-ml-azure package, you can turn that script into one that runs on the cloud by adding one function call:

from pathlib import Path
from health_azure import submit_to_azure_if_needed
if __name__ == '__main__':
    current_file = Path(__file__)
    run_info = submit_to_azure_if_needed(compute_cluster_name="preprocess-ds12",
                                         input_datasets=["images123"],
                                         # Omit this line if you don't create an output dataset (for example, in
                                         # model training scripts)
                                         output_datasets=["images123_resized"],
                                         default_datastore="my_datastore")
    # When running in AzureML, run_info.input_datasets and run_info.output_datasets will be populated,
    # and point to the data coming from blob storage. For runs outside AML, the paths will be None.
    # Replace the None with a meaningful path, so that we can still run the script easily outside AML.
    input_dataset = run_info.input_datasets[0] or Path("/tmp/my_dataset")
    output_dataset = run_info.output_datasets[0] or Path("/tmp/my_output")
    files_processed = []
    for file in input_dataset.glob("*.jpg"):
        contents = read_image(file)
        resized = contents.resize(0.5)
        write_image(output_dataset / file.name)
        files_processed.append(file.name)
    # Any other files that you would not consider an "output dataset", like metrics, etc, should be written to
    # a folder "./outputs". Any files written into that folder will later be visible in the AzureML UI.
    # run_info.output_folder already points to the correct folder.
    stats_file = run_info.output_folder / "processed_files.txt"
    stats_file.write_text("\n".join(files_processed))

Once these changes are in place, you can submit the script to AzureML by supplying an additional --azureml flag on the commandline, like python myscript.py --azureml.

That's it!

For details, please refer to the onboarding page.

For more examples, please see examples.md.

Issues

If you've found a bug in the code, please check the issues page. If no existing issue exists, please open a new one. Be sure to include

  • A descriptive title
  • Expected behaviour (including a code sample if possible)
  • Actual behavior

Contributing

We welcome all contributions that help us achieve our aim of speeding up ML/AI research in health and life sciences. Examples of contributions are

  • Data loaders for specific health & life sciences data
  • Network architectures and components for deep learning models
  • Tools to analyze and/or visualize data
  • ...

Please check the detailed page about contributions.

Licensing

MIT License

You are responsible for the performance, the necessary testing, and if needed any regulatory clearance for any of the models produced by this toolbox.

Contact

If you have any feature requests, or find issues in the code, please create an issue on GitHub.

Contribution Licensing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号