minisora

minisora

致力探索AI视频生成技术的开源社区

MiniSora是一个社区驱动的开源项目,专注于探索AI视频生成技术Sora的实现路径。该项目组织定期圆桌讨论、深入研究视频生成技术、复现相关论文并进行技术回顾。MiniSora旨在开发GPU友好、训练高效、推理快速的AI视频生成方案,推动人工智能视频生成领域的开源发展。

MiniSora开源社区视频生成SoraDiTGithub开源项目

MiniSora Community

<!-- PROJECT SHIELDS -->

[![Contributors][contributors-shield]][contributors-url] [![Forks][forks-shield]][forks-url] [![Issues][issues-shield]][issues-url] [![MIT License][license-shield]][license-url] [![Stargazers][stars-shield]][stars-url] <br />

<!-- PROJECT LOGO --> <div align="center"> <img src="assets/logo.jpg" width="600"/> <div>&nbsp;</div> <div align="center"> </div> </div> <div align="center">

English | 简体中文

</div> <p align="center"> 👋 join us on <a href="https://cdn.vansin.top/minisora.jpg" target="_blank">WeChat</a> </p>

The MiniSora open-source community is positioned as a community-driven initiative organized spontaneously by community members. The MiniSora community aims to explore the implementation path and future development direction of Sora.

  • Regular round-table discussions will be held with the Sora team and the community to explore possibilities.
  • We will delve into existing technological pathways for video generation.
  • Leading the replication of papers or research results related to Sora, such as DiT (MiniSora-DiT), etc.
  • Conducting a comprehensive review of Sora-related technologies and their implementations, i.e., "From DDPM to Sora: A Review of Video Generation Models Based on Diffusion Models".

Hot News

empty

Reproduction Group of MiniSora Community

Sora Reproduction Goals of MiniSora

  1. GPU-Friendly: Ideally, it should have low requirements for GPU memory size and the number of GPUs, such as being trainable and inferable with compute power like 8 A100 80G cards, 8 A6000 48G cards, or RTX4090 24G.
  2. Training-Efficiency: It should achieve good results without requiring extensive training time.
  3. Inference-Efficiency: When generating videos during inference, there is no need for high length or resolution; acceptable parameters include 3-10 seconds in length and 480p resolution.

MiniSora-DiT: Reproducing the DiT Paper with XTuner

https://github.com/mini-sora/minisora-DiT

Requirements

We are recruiting MiniSora Community contributors to reproduce DiT using XTuner.

We hope the community member has the following characteristics:

  1. Familiarity with the OpenMMLab MMEngine mechanism.
  2. Familiarity with DiT.

Background

  1. The author of DiT is the same as the author of Sora.
  2. XTuner has the core technology to efficiently train sequences of length 1000K.

Support

  1. Computational resources: 2*A100.
  2. Strong supports from XTuner core developer P佬@pppppM.

Recent round-table Discussions

Paper Interpretation of Stable Diffusion 3 paper: MM-DiT

Speaker: MMagic Core Contributors

Live Streaming Time: 03/12 20:00

Highlights: MMagic core contributors will lead us in interpreting the Stable Diffusion 3 paper, discussing the architecture details and design principles of Stable Diffusion 3.

PPT: FeiShu Link

<!-- Please scan the QR code with WeChat to book a live video session. <div align="center"> <img src="assets/SD3论文领读.png" width="100"/> <div>&nbsp;</div> <div align="center"> </div> </div> -->

Highlights from Previous Discussions

Night Talk with Sora: Video Diffusion Overview

ZhiHu Notes: A Survey on Generative Diffusion Model: An Overview of Generative Diffusion Models

Paper Reading Program

Recruitment of Presenters

Related Work

<h3 id="diffusion-models">01 Diffusion Models</h3>
PaperLink
1) Guided-Diffusion: Diffusion Models Beat GANs on Image SynthesisNeurIPS 21 Paper, GitHub
2) Latent Diffusion: High-Resolution Image Synthesis with Latent Diffusion ModelsCVPR 22 Paper, GitHub
3) EDM: Elucidating the Design Space of Diffusion-Based Generative ModelsNeurIPS 22 Paper, GitHub
4) DDPM: Denoising Diffusion Probabilistic ModelsNeurIPS 20 Paper, GitHub
5) DDIM: Denoising Diffusion Implicit ModelsICLR 21 Paper, GitHub
6) Score-Based Diffusion: Score-Based Generative Modeling through Stochastic Differential EquationsICLR 21 Paper, GitHub, Blog
7) Stable Cascade: Würstchen: An efficient architecture for large-scale text-to-image diffusion modelsICLR 24 Paper, GitHub, Blog
8) Diffusion Models in Vision: A SurveyTPAMI 23 Paper, GitHub
9) Improved DDPM: Improved Denoising Diffusion Probabilistic ModelsICML 21 Paper, Github
10) Classifier-free diffusion guidanceNIPS 21 Paper
11) Glide: Towards photorealistic image generation and editing with text-guided diffusion modelsPaper, Github
12) VQ-DDM: Global Context with Discrete Diffusion in Vector Quantised Modelling for Image GenerationCVPR 22 Paper, Github
13) Diffusion Models for Medical Anomaly DetectionPaper, Github
14) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification SystemsPaper
15) DiffusionDet: Diffusion Model for Object DetectionICCV 23 Paper, Github
16) Label-efficient semantic segmentation with diffusion modelsICLR 22 Paper, Github, Project
<h3 id="diffusion-transformer">02 Diffusion Transformer</h3>
PaperLink
1) UViT: All are Worth Words: A ViT Backbone for Diffusion ModelsCVPR 23 Paper, GitHub, ModelScope
2) DiT: Scalable Diffusion Models with TransformersICCV 23 Paper, GitHub, Project, ModelScope
3) SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant TransformersArXiv 23, GitHub, ModelScope
4) FiT: Flexible Vision Transformer for Diffusion ModelArXiv 24, GitHub
5) k-diffusion: Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion TransformersArXiv 24, GitHub
6) Large-DiT: Large Diffusion TransformerGitHub
7) VisionLLaMA: A Unified LLaMA Interface for Vision TasksArXiv 24, GitHub
8) Stable Diffusion 3: MM-DiT: Scaling Rectified Flow Transformers for High-Resolution Image SynthesisPaper, Blog
9) PIXART-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image GenerationArXiv 24, Project
10) PIXART-α: Fast Training of Diffusion Transformer for Photorealistic

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多