Project Icon

minisora

致力探索AI视频生成技术的开源社区

MiniSora是一个社区驱动的开源项目,专注于探索AI视频生成技术Sora的实现路径。该项目组织定期圆桌讨论、深入研究视频生成技术、复现相关论文并进行技术回顾。MiniSora旨在开发GPU友好、训练高效、推理快速的AI视频生成方案,推动人工智能视频生成领域的开源发展。

MiniSora Community

[![Contributors][contributors-shield]][contributors-url] [![Forks][forks-shield]][forks-url] [![Issues][issues-shield]][issues-url] [![MIT License][license-shield]][license-url] [![Stargazers][stars-shield]][stars-url]

 

English | 简体中文

👋 join us on WeChat

The MiniSora open-source community is positioned as a community-driven initiative organized spontaneously by community members. The MiniSora community aims to explore the implementation path and future development direction of Sora.

  • Regular round-table discussions will be held with the Sora team and the community to explore possibilities.
  • We will delve into existing technological pathways for video generation.
  • Leading the replication of papers or research results related to Sora, such as DiT (MiniSora-DiT), etc.
  • Conducting a comprehensive review of Sora-related technologies and their implementations, i.e., "From DDPM to Sora: A Review of Video Generation Models Based on Diffusion Models".

Hot News

empty

Reproduction Group of MiniSora Community

Sora Reproduction Goals of MiniSora

  1. GPU-Friendly: Ideally, it should have low requirements for GPU memory size and the number of GPUs, such as being trainable and inferable with compute power like 8 A100 80G cards, 8 A6000 48G cards, or RTX4090 24G.
  2. Training-Efficiency: It should achieve good results without requiring extensive training time.
  3. Inference-Efficiency: When generating videos during inference, there is no need for high length or resolution; acceptable parameters include 3-10 seconds in length and 480p resolution.

MiniSora-DiT: Reproducing the DiT Paper with XTuner

https://github.com/mini-sora/minisora-DiT

Requirements

We are recruiting MiniSora Community contributors to reproduce DiT using XTuner.

We hope the community member has the following characteristics:

  1. Familiarity with the OpenMMLab MMEngine mechanism.
  2. Familiarity with DiT.

Background

  1. The author of DiT is the same as the author of Sora.
  2. XTuner has the core technology to efficiently train sequences of length 1000K.

Support

  1. Computational resources: 2*A100.
  2. Strong supports from XTuner core developer P佬@pppppM.

Recent round-table Discussions

Paper Interpretation of Stable Diffusion 3 paper: MM-DiT

Speaker: MMagic Core Contributors

Live Streaming Time: 03/12 20:00

Highlights: MMagic core contributors will lead us in interpreting the Stable Diffusion 3 paper, discussing the architecture details and design principles of Stable Diffusion 3.

PPT: FeiShu Link

Highlights from Previous Discussions

Night Talk with Sora: Video Diffusion Overview

ZhiHu Notes: A Survey on Generative Diffusion Model: An Overview of Generative Diffusion Models

Paper Reading Program

Recruitment of Presenters

Related Work

01 Diffusion Models

PaperLink
1) Guided-Diffusion: Diffusion Models Beat GANs on Image SynthesisNeurIPS 21 Paper, GitHub
2) Latent Diffusion: High-Resolution Image Synthesis with Latent Diffusion ModelsCVPR 22 Paper, GitHub
3) EDM: Elucidating the Design Space of Diffusion-Based Generative ModelsNeurIPS 22 Paper, GitHub
4) DDPM: Denoising Diffusion Probabilistic ModelsNeurIPS 20 Paper, GitHub
5) DDIM: Denoising Diffusion Implicit ModelsICLR 21 Paper, GitHub
6) Score-Based Diffusion: Score-Based Generative Modeling through Stochastic Differential EquationsICLR 21 Paper, GitHub, Blog
7) Stable Cascade: Würstchen: An efficient architecture for large-scale text-to-image diffusion modelsICLR 24 Paper, GitHub, Blog
8) Diffusion Models in Vision: A SurveyTPAMI 23 Paper, GitHub
9) Improved DDPM: Improved Denoising Diffusion Probabilistic ModelsICML 21 Paper, Github
10) Classifier-free diffusion guidanceNIPS 21 Paper
11) Glide: Towards photorealistic image generation and editing with text-guided diffusion modelsPaper, Github
12) VQ-DDM: Global Context with Discrete Diffusion in Vector Quantised Modelling for Image GenerationCVPR 22 Paper, Github
13) Diffusion Models for Medical Anomaly DetectionPaper, Github
14) Generation of Anonymous Chest Radiographs Using Latent Diffusion Models for Training Thoracic Abnormality Classification SystemsPaper
15) DiffusionDet: Diffusion Model for Object DetectionICCV 23 Paper, Github
16) Label-efficient semantic segmentation with diffusion modelsICLR 22 Paper, Github, Project

02 Diffusion Transformer

PaperLink
1) UViT: All are Worth Words: A ViT Backbone for Diffusion ModelsCVPR 23 Paper, GitHub, ModelScope
2) DiT: Scalable Diffusion Models with TransformersICCV 23 Paper, GitHub, Project, ModelScope
3) SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant TransformersArXiv 23, GitHub, ModelScope
4) FiT: Flexible Vision Transformer for Diffusion ModelArXiv 24, GitHub
5) k-diffusion: Scalable High-Resolution Pixel-Space Image Synthesis with Hourglass Diffusion TransformersArXiv 24, GitHub
6) Large-DiT: Large Diffusion TransformerGitHub
7) VisionLLaMA: A Unified LLaMA Interface for Vision TasksArXiv 24, GitHub
8) Stable Diffusion 3: MM-DiT: Scaling Rectified Flow Transformers for High-Resolution Image SynthesisPaper, Blog
9) PIXART-Σ: Weak-to-Strong Training of Diffusion Transformer for 4K Text-to-Image GenerationArXiv 24, Project
10) PIXART-α: Fast Training of Diffusion Transformer for Photorealistic
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号