Project Icon

Qwen2-7B-Instruct-abliterated

权重正交化在文本生成模型性能中的应用

本项目通过利用failspy的笔记本对Qwen2-7B-Instruct模型进行权重正交化优化,旨在削弱模型的强拒绝方向。尽管模型在优化后可能仍会出现拒绝请求或误解意图的情况,其在ARC、Winogrande等数据集上的性能仍保持高水平。使用lm-evaluation-harness 0.4.2进行评估,结果显示在ARC、GSM8K、HellaSwag等数据集上的表现优异,适合相关应用。

Qwen2.5-14B-Instruct-GGUF - 针对不同硬件环境优化的大模型量化版本
GPU运算GithubHuggingfaceQwen2.5-14B-Instruct人工智能模型开源项目模型模型推理模型量化
Qwen2.5-14B-Instruct模型的量化优化项目,通过F16到Q2_K等多种精度量化方案,将模型体积压缩至5.36GB-29.55GB范围。项目集成了ARM芯片优化版本和创新的I-quant量化技术,实现了模型性能、速度与硬件适配的平衡。量化版本涵盖了从高精度到轻量级的多个选项,方便在不同计算资源条件下部署使用。
Humanish-LLama3-8B-Instruct-GGUF - 介绍模型的量化技术实现文本生成性能突破
GithubHuggingfaceHumanish-LLama3-8B-Instruct基准测试开源项目数据集文本生成模型量化
该项目通过llama.cpp进行量化,优化了模型的嵌入和输出权重,使得文本生成更加高效。模型在多个数据集上表现出色,如IFEval数据集测试中达到严格准确率64.98%。项目提供多种文件格式,支持多样化的计算资源和硬件环境,以满足不同的使用需求,包括低内存和ARM芯片的优化场景。
Qwen2-1.5B-Instruct-GGUF - Qwen2提供出色的多语言支持与兼容性
GithubHuggingfaceQwen2Transformer架构多语言能力大语言模型开源项目指令调优模型
Qwen2系列涵盖基础及指令微调语言模型,参数规模从0.5亿到72亿,具有优秀的多语言、编码及推理能力。1.5B版本展示了卓越的语言理解与生成能力,可媲美专有模型。本地可通过llama.cpp运行,并兼容OpenAI API以简便方式访问。多种模式与量化选项,适应不同需求与应用场景。
Qwen2-7B - 开源大语言模型在多项基准测试中展现优异性能
GithubHuggingfaceQwen2人工智能大语言模型开源项目机器学习模型自然语言处理
Qwen2-7B是新一代Qwen大语言模型系列的7B参数基础版本。该模型在语言理解、生成、多语言处理、编程、数学和推理等多个领域的基准测试中展现出优异表现,不仅超越了大多数开源模型,还与专有模型实力相当。Qwen2-7B基于改进的Transformer架构,引入了SwiGLU激活函数、注意力QKV偏置和组查询注意力等创新技术,并优化了分词器以更好地支持多种自然语言和编程语言。
Qwen2.5-14B-Instruct - 多语言支持的高性能指令微调模型
GithubHuggingfaceQwen2.5人工智能多语言支持大语言模型开源项目模型自然语言处理
Qwen2.5-14B-Instruct是Qwen2.5系列中的14B参数指令微调大语言模型,支持29种以上语言。该模型在知识储备、编码和数学能力方面有显著提升,在指令跟随、长文本生成和结构化数据理解等领域表现卓越。它支持128K的上下文长度和8K的生成长度,采用RoPE和SwiGLU等先进架构,提供高效的多语言自然语言处理能力。
huihui-ai_-_Qwen2.5-14B-Instruct-abliterated-v2-gguf - Qwen2.5-14B模型无审查量化版本集合
GithubHuggingfaceQwen2.5-14B大语言模型开源项目权重文件模型模型部署量化模型
这是一个基于Qwen2.5-14B-Instruct模型的GGUF量化版本集合。模型采用abliteration技术移除了安全过滤限制,并提供从5.37GB到14.62GB的多种量化版本,包括Q2_K、IQ3、Q4等系列。项目基于Apache-2.0许可证开源,支持通过transformers库加载使用。
Qwen2.5-Coder-7B-Instruct - 卓越代码生成能力和128K长文本支持
GithubHuggingfaceQwen2.5-Coder人工智能代码生成大型语言模型开源项目模型长文本处理
Qwen2.5-Coder-7B-Instruct是基于Qwen2.5开发的代码专用大语言模型。该模型在代码生成、推理和修复方面表现出色,为代码智能体等实际应用奠定了坚实基础。模型支持处理高达128K tokens的长文本,拥有7.61B参数,采用因果语言模型架构。除了增强编码能力,它还在数学和通用任务中保持了优秀表现。开发者可通过简洁的代码示例快速上手使用此模型进行文本生成。
Qwen2.5-1.5B-Instruct-bnb-4bit - Unsloth功能提升模型微调效率,优化内存占用
GithubHuggingfaceQwen2.5Transformer多语言支持开源项目性能提升指令微调模型
Qwen2.5系列包括多种尺寸和优化功能,提升编程与数学能力,支持29种语言,并具备长上下文处理能力。利用Google Colab上的免费notebook,可实现模型微调的速度提升和内存使用优化。Qwen2.5-1.5B-Instruct强化了指令响应、长文本生成、多语言处理及结构化数据处理能力。
Mistral-7B-Instruct-v0.2-AWQ - Mistral-7B-Instruct-v0.2改进版指令微调大语言模型
AI推理AWQGithubHuggingfaceMistral-7B-Instruct-v0.2开源项目文本生成模型模型量化
Mistral-7B-Instruct-v0.2是Mistral AI团队开发的改进版指令微调大语言模型。基于Mistral-7B-v0.1架构,采用分组查询注意力和滑动窗口注意力技术。支持[INST]和[/INST]标记的指令格式,提供聊天模板功能。模型性能出色,但缺乏审核机制。适用于需要无限制输出的应用场景,展示了基础模型易于微调并获得优秀性能。
Replete-LLM-V2.5-Qwen-14b-GGUF - Replete-LLM-V2.5-Qwen-14b模型的多量化处理与硬件优化概述
ARM芯片GithubHuggingfaceRombos-LLM-V2.5-Qwen-14b开源项目性能比较模型模型优化量化
该项目对Rombos-LLM-V2.5-Qwen-14b模型进行了多种量化优化,使用了llama.cpp的b3825版本。支持多种量化格式,如f16、Q8_0、Q6_K_L等,适用不同硬件环境,推荐Q6_K_L和Q5_K_L以实现高质量和资源节省。用户可根据硬件需求选择合适的格式,并使用huggingface-cli进行下载。针对ARM芯片提供了特定的优化量化选项Q4_0_X_X,广泛适用于文本生成应用,提升运行效率和输出质量。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号