rnaseq

rnaseq

全面分析RNA测序数据流程

nf-core/rnaseq是一个用于分析RNA测序数据的开源生物信息学流程。它接收样本表和FASTQ文件作为输入,执行质量控制、修剪和比对,生成基因表达矩阵和质量报告。该流程支持多种比对和定量方法,提供全面的质量控制功能,包括读取、比对、基因类型、样本相似性和链特异性分析。适用于有参考基因组和注释的RNA-seq数据处理。

nf-core/rnaseqRNA测序生物信息学Nextflow基因表达Github开源项目

nf-core/rnaseq nf-core/rnaseq

GitHub Actions CI Status GitHub Actions Linting StatusAWS CICite with Zenodo

Nextflow run with conda run with docker run with singularity Launch on Nextflow Tower

Get help on SlackFollow on TwitterFollow on MastodonWatch on YouTube

Introduction

nf-core/rnaseq is a bioinformatics pipeline that can be used to analyse RNA sequencing data obtained from organisms with a reference genome and annotation. It takes a samplesheet and FASTQ files as input, performs quality control (QC), trimming and (pseudo-)alignment, and produces a gene expression matrix and extensive QC report.

nf-core/rnaseq metro map

  1. Merge re-sequenced FastQ files (cat)
  2. Sub-sample FastQ files and auto-infer strandedness (fq, Salmon)
  3. Read QC (FastQC)
  4. UMI extraction (UMI-tools)
  5. Adapter and quality trimming (Trim Galore!)
  6. Removal of genome contaminants (BBSplit)
  7. Removal of ribosomal RNA (SortMeRNA)
  8. Choice of multiple alignment and quantification routes:
    1. STAR -> Salmon
    2. STAR -> RSEM
    3. HiSAT2 -> NO QUANTIFICATION
  9. Sort and index alignments (SAMtools)
  10. UMI-based deduplication (UMI-tools)
  11. Duplicate read marking (picard MarkDuplicates)
  12. Transcript assembly and quantification (StringTie)
  13. Create bigWig coverage files (BEDTools, bedGraphToBigWig)
  14. Extensive quality control:
    1. RSeQC
    2. Qualimap
    3. dupRadar
    4. Preseq
    5. DESeq2
  15. Pseudoalignment and quantification (Salmon or 'Kallisto'; optional)
  16. Present QC for raw read, alignment, gene biotype, sample similarity, and strand-specificity checks (MultiQC, R)

Note The SRA download functionality has been removed from the pipeline (>=3.2) and ported to an independent workflow called nf-core/fetchngs. You can provide --nf_core_pipeline rnaseq when running nf-core/fetchngs to download and auto-create a samplesheet containing publicly available samples that can be accepted directly as input by this pipeline.

Warning Quantification isn't performed if using --aligner hisat2 due to the lack of an appropriate option to calculate accurate expression estimates from HISAT2 derived genomic alignments. However, you can use this route if you have a preference for the alignment, QC and other types of downstream analysis compatible with the output of HISAT2.

Usage

[!NOTE] If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with -profile test before running the workflow on actual data.

First, prepare a samplesheet with your input data that looks as follows:

samplesheet.csv:

sample,fastq_1,fastq_2,strandedness CONTROL_REP1,AEG588A1_S1_L002_R1_001.fastq.gz,AEG588A1_S1_L002_R2_001.fastq.gz,auto CONTROL_REP1,AEG588A1_S1_L003_R1_001.fastq.gz,AEG588A1_S1_L003_R2_001.fastq.gz,auto CONTROL_REP1,AEG588A1_S1_L004_R1_001.fastq.gz,AEG588A1_S1_L004_R2_001.fastq.gz,auto

Each row represents a fastq file (single-end) or a pair of fastq files (paired end). Rows with the same sample identifier are considered technical replicates and merged automatically. The strandedness refers to the library preparation and will be automatically inferred if set to auto.

Warning: Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

Now, you can run the pipeline using:

nextflow run nf-core/rnaseq \ --input samplesheet.csv \ --outdir <OUTDIR> \ --genome GRCh37 \ -profile <docker/singularity/.../institute>

[!WARNING] Please provide pipeline parameters via the CLI or Nextflow -params-file option. Custom config files including those provided by the -c Nextflow option can be used to provide any configuration except for parameters; see docs.

For more details and further functionality, please refer to the usage documentation and the parameter documentation.

Pipeline output

To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation.

This pipeline quantifies RNA-sequenced reads relative to genes/transcripts in the genome and normalizes the resulting data. It does not compare the samples statistically in order to assign significance in the form of FDR or P-values. For downstream analyses, the output files from this pipeline can be analysed directly in statistical environments like R, Julia or via the nf-core/differentialabundance pipeline.

Online videos

A short talk about the history, current status and functionality on offer in this pipeline was given by Harshil Patel (@drpatelh) on 8th February 2022 as part of the nf-core/bytesize series.

You can find numerous talks on the nf-core events page from various topics including writing pipelines/modules in Nextflow DSL2, using nf-core tooling, running nf-core pipelines as well as more generic content like contributing to Github. Please check them out!

Credits

These scripts were originally written for use at the National Genomics Infrastructure, part of SciLifeLab in Stockholm, Sweden, by Phil Ewels (@ewels) and Rickard Hammarén (@Hammarn).

The pipeline was re-written in Nextflow DSL2 and is primarily maintained by Harshil Patel (@drpatelh) from Seqera Labs, Spain.

The pipeline workflow diagram was initially designed by Sarah Guinchard (@G-Sarah) and James Fellows Yates (@jfy133), further modifications where made by Harshil Patel (@drpatelh) and Maxime Garcia (@maxulysse).

Many thanks to other who have helped out along the way too, including (but not limited to):

Contributions and Support

If you would like to contribute to this pipeline, please see the contributing guidelines.

For further information or help, don't hesitate to get in touch on the Slack #rnaseq channel (you can join with this invite).

Citations

If you use nf-core/rnaseq for your analysis, please cite it using the following doi: 10.5281/zenodo.1400710

An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md file.

You can cite the nf-core publication as follows:

The nf-core framework for community-curated bioinformatics pipelines.

Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.

Nat Biotechnol. 2020 Feb 13. doi:

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多