awesome-AI-based-protein-design

awesome-AI-based-protein-design

AI蛋白质设计研究前沿资源汇总

本资源库汇集了AI驱动蛋白质设计领域的前沿研究成果,包括来自Nature、Science等顶级期刊的重要论文。内容涵盖概述、方法论和应用等多个方面,按类别进行组织。资源库持续更新,跟踪该领域最新进展,为研究人员提供参考。探索AI在蛋白质设计中的创新应用,关注这一不断发展的交叉学科领域。

蛋白质设计人工智能深度学习生成模型结构预测Github开源项目

基于人工智能的蛋白质设计精选

这是一个关于基于人工智能的蛋白质设计的研究论文集。 该仓库将持续更新,以跟踪基于人工智能的蛋白质设计的前沿进展。

欢迎关注和点赞!

目录

蛋白质设计概述

人工智能工具已经解决了蛋白质结构预测问题。这个问题从氨基酸序列推导出空间结构,并达到了原子级别的预测精度,例如AlphaFold 2。它结合了之前的蛋白质结构预测模型,自动学习蛋白质设计方法,从而真正服务于人类的制药需求。

图片信息1 图片信息2

蛋白质设计的具体实践方式多种多样,适用于不同设计过程的问题定义也大不相同。以下是一些例子:

  1. 从空间结构预测氨基酸序列的问题(Alphafold的逆问题),这假设可以通过分子动力学模拟等方法推导出所需蛋白质的空间结构。
  2. 对给定部分结构的蛋白质结构完成问题,如著名的David Baker团队最近在Science上发表的论文[1]。这假设只能找到部分结构匹配。
  3. 将拟合的能量函数与MD模拟相结合进行蛋白质设计,如中国刘海燕团队最近在Nature上发表的论文[2]。

此外,许多方法可用于蛋白质设计,相应的人工智能问题定义也大不相同。本文列出了一些基于人工智能的蛋白质设计的高水平文章,未来将持续更新。

论文

格式:
- [标题](论文链接) [链接]
  - 作者1、作者2和作者3...
  - 发表方
  - 关键词

Nature

  • 使用AlphaFold 3精确预测生物分子相互作用的结构

    • Josh Abramson、Jonas Adler、Jack Dunger、Richard Evans、Tim Green、Alexander Pritzel、Olaf Ronneberger、Lindsay Willmore、Andrew J. Ballard、Joshua Bambrick、Sebastian W. Bodenstein、David A. Evans、Chia-Chun Hung、Michael O'Neill、David Reiman、Kathryn Tunyasuvunakool、Zachary Wu、Akvilė Žemgulytė、Eirini Arvaniti、Charles Beattie、Ottavia Bertolli、Alex Bridgland、Alexey Cherepanov、Miles Congreve、Alexander I. Cowen-Rivers、Andrew Cowie、Michael Figurnov、Fabian B. Fuchs、Hannah Gladman、Rishub Jain、Yousuf A. Khan、Caroline M. R. Low、Kuba Perlin、Anna Potapenko、Pascal Savy、Sukhdeep Singh、Adrian Stecula、Ashok Thillaisundaram、Catherine Tong、Sergei Yakneen、Ellen D. Zhong、Michal Zielinski、Augustin Žídek、Victor Bapst、Pushmeet Kohli、Max Jaderberg、Demis Hassabis 和 John M. Jumper
    • 关键词:基于扩散的架构、蛋白质结构建模、生物分子空间建模
  • 用于蛋白质设计的以骨架为中心的神经网络能量函数

    • B Huang、Y Xu、X Hu、Y Liu、S Liao、J Zhang、C Huang
    • 关键词:能量函数、MD模拟、以骨架为中心
  • 通过深度网络幻觉进行从头蛋白质设计

    • Ivan Anishchenko、Samuel J. Pellock、Tamuka M. Chidyausiku、Theresa A. Ramelot、Sergey Ovchinnikov、Jingzhou Hao、Khushboo Bafna、Christoffer Norn、Alex Kang、Asim K. Bera、Frank DiMaio、Lauren Carter、Cameron M. Chow、Gaetano T. Montelione 和 David Baker
    • 关键词:幻觉、修复、蛋白质设计
  • 仅从目标结构设计蛋白质结合蛋白

    • Longxing Cao、Brian Coventry、Inna Goreshnik、Buwei Huang、William Sheffler、Joon Sung Park、Kevin M. Jude、Iva Marković、Rameshwar U. Kadam、Koen H. G. Verschueren、Kenneth Verstraete、Scott Thomas Russell Walsh、Nathaniel Bennett、Ashish Phal、Aerin Yang、Lisa Kozodoy、Michelle DeWitt、Lora Picton、Lauren Miller、Eva-Maria Strauch、Nicholas D. DeBouver、Allison Pires、Asim K. Bera、Samer Halabiya、Bradley Hammerson、Wei Yang、Steffen Bernard、Lance Stewart、Ian A. Wilson、Hannele Ruohola-Baker、Joseph Schlessinger、Sangwon Lee、Savvas N. Savvides、K. Christopher Garcia 和 David Baker
    • 关键词:结合位点

Nature Biomedical Engineering

  • 通过深度生成模型和分子动力学模拟加速抗菌剂的发现
    • Payel Das、Tom Sercu、Kahini Wadhawan、Inkit Padhi、Sebastian Gehrmann、Flaviu Cipcigan、Vijil Chenthamarakshan、Hendrik Strobelt、Cicero dos Santos、Pin-Yu Chen、Yi Yan Yang、Jeremy P. K. Tan、James Hedrick、Jason Crain 和 Aleksandra Mojsilovic
    • 关键词:抗菌剂、生成自编码器、分子动力学

Nature Communications

Nature Machine Intelligence

Science

  • 使用ProteinMPNN进行稳健的深度学习蛋白质序列设计

    • J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky, A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan, B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, D. Baker
    • 关键词:语言模型、结构预测
  • 使用深度学习构建蛋白质功能位点支架

    • Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L. Watson, Karla M. Castro, Robert Ragotte, Amijai Saragovi, Lukas F. Milles, Minkyung Baek, Ivan Anishchenko, Wei Yang, Derrick R. Hicks, Marc Expòsit, Thomas Schlichthaerle, Jung-Ho Chun, Justas Dauparas, Nathaniel Bennett, Basile I. M. Wicky, Andrew Muenks, Frank DiMaio, Bruno Correia, Sergey Ovchinnikov, David Baker
    • 关键词:功能位点、深度学习、幻觉、修复

ICML、ICLR或NeurIPS

Arxiv 或 bioRxiv

其他

参考文献

[1] Wang, Jue, et al. "使用深度学习搭建蛋白质功能位点"。Science 377.6604 (2022): 387-394.

[2] Huang, Bin, et al. "用于蛋白质设计的以骨架为中心的神经网络能量函数"。Nature 602.7897 (2022): 523-528.

贡献

我们的目标是使这个仓库变得更好。如果您有兴趣贡献,请参考这里的贡献指南。

许可证

基于人工智能的蛋白质设计精选集在 Apache 2.0 许可下发布。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多