rag-demystified

rag-demystified

探讨检索增强生成(RAG)管道的内部机制,揭示其技巧、局限性和成本

本项目深入探讨了检索增强生成(RAG)管道的内部机制,揭示其技巧、局限性和成本。通过LlamaIndex和Haystack框架,了解如何构建和优化RAG管道,并解决透明度和错误问题。详细分析了子问题查询引擎的工作原理,帮助用户理解复杂的RAG管道的关键组成部分和面临的挑战。

RAG pipelinesLLMsLlamaIndexHaystackEvaDBGithub开源项目

项目介绍:RAG-Demystified

RAG 概述

RAG,全称为检索增强生成(Retrieval-Augmented Generation),是当前热门的大型语言模型(LLM)问答系统的先进人工智能范式。它通常包含三个核心组件:

  1. 数据仓库:这是一个信息集合库,存储了与问答任务相关的各种数据源(比如文档、表格等)。

  2. 向量检索:针对一个给定问题,通过向量存储系统(如 Faiss)找到与问题最相似的前 K 个数据块。

  3. 响应生成:利用大型语言模型(比如 GPT-4),根据之前选取的最相似数据块生成回答。

RAG 相比传统的问答系统有两大优势:一是因数据仓库的实时更新,信息总是保持最新;二是允许来源追溯,让用户可以明确了解信息来源,验证准确性并减少模型产生的虚假信息。

构建高级 RAG 管道

为了应对更复杂的问题,像 LlamaIndex 这样的近期 AI 框架引入了先进的抽象,比如"子问题查询引擎"。该应用通过使用子问题查询引擎,揭示高级 RAG 管道的内部机制。过程中,将高级抽象简化为核心组件,并识别其中的一些挑战。

架构设置

我们的数据仓库包含关于不同城市的维基百科文章,每篇文章作为一个独立数据源。在这个示例中,我们设定的问题可能是:

  • “芝加哥的人口是多少?”
  • “请总结亚特兰大的积极方面。”
  • “哪个城市人口最多?”

这些问题可能是针对单一数据源的简单事实/总结问题,或是涉及多个数据源的复杂问题。

调料秘方

先进的 RAG 管道中,每个组件实际上由单次 LLM 调用驱动。整个管道是一系列精心设计的模板提示,通过这些模板提示,复杂任务得以实现。

子问题查询引擎的内部机制可以分解为如下三个步骤:

  1. 子问题生成:将复杂问题拆解为多个子问题,每个子问题配以合适的数据源和检索方法。
  2. 向量/摘要检索:根据选定的检索方法和数据源,获取相关信息。
  3. 响应聚合:将子问题回答汇总为最终回答。

任务细节

  • 任务1:子问题生成:将复杂问题拆解为子问题,并为每个子问题确定适当的数据源和检索方法。

  • 任务2:向量/摘要检索:对于每个子问题,采用选定检索方法从相应数据源检索信息。例如,通过向量检索方法获取芝加哥人口数据。

  • 任务3:响应聚合:将子问题的回答整合为最终答案。

面临的挑战

高级 RAG 管道具有许多复杂性:

  1. 问题敏感性:系统对问题非常敏感,不同的用户问题可能导致管道出现意想不到的错误。

  2. 成本问题:高级 RAG 管道的成本与生成的子问题数量、使用的检索函数及查询的数据源有关。这些不透明且敏感的成本结构对系统构建带来了挑战。

结论

虽然 LLM 驱动的高级 RAG 管道在问答系统中发挥了变革性作用,但其背后依赖的精细提示模板和多次链式 LLM 调用使其并非简单的一键解决方案。了解其内部机制有助于开发出更健壮、效率更高的系统,实现其最大潜力。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多