无需参考模型的简化优化算法
SimPO 是一个无需参考模型的简化偏好优化算法,表现优于AlpacaEval 2、MT-Bench和Arena-Hard等多个基准。2024年7月更新发布的SimPO模型通过微调Google的gemma-2 9B模型,达成了72.4% AlapcaEval 2 LC胜率和59.1% Arena-Hard胜率。更多详情、训练脚本和数据生成脚本请访问SimPO的GitHub仓库。
Simple Preference Optimization(简称SimPO),即简单偏好优化,是一种针对偏好优化问题的新算法,旨在实现比当前方法(如DPO,即直接偏好优化)更高效的优化效果。SimPO无需参考模型,并在多个基准评估中,如AlpacaEval 2、MT-Bench和Arena-Hard等,表现优于现有的DPO方法及其变体。
SimPO提供了一个环境文件,以确保实验结果的可重现性。强烈建议在相同的硬件和CUDA版本下使用相同的Python包版本来运行SimPO。
在SimPO中,超参数learning_rate
(学习率)、beta
(奖励缩放)和gamma
(目标奖励幅度)尤为关键。对这些超参数的合理调节可以显著提升模型的性能。例如,较小的学习率对于数学等需要较复杂推理的领域更为适合。
SimPO的训练和评估需要确保一致性,尤其是在评测AlpacaEval 2结果时,必须使用指定的库和配置文件,以免产生结果分歧。
提供基于Google的gemma-2-9b-it的两个模型,这些模型在GSM和MMLU任务上的表现均优于基础模型。
该版本重新标注了偏好优化数据集,并在多个测试中显示出超越前一版本的性能,但是在某些输出中可能存在格式遵循性问题。
提供了一系列评测模型,用于偏好优化算法的比较研究。
SimPO代码基于alignment-handbook项目构建,具体的安装步骤包括创建Python虚拟环境、安装PyTorch及其他依赖包。在推理任务中,可以参考generate.py脚本以正确加载模型。
SimPO提供了四种不同设置下的训练配置文件,适用于不同需求的训练任务。
对于AlpacaEval 2、Arena-Hard和MT-Bench的评估,项目团队遵循了官方的实施方案,用户可参考相关的开源项目获取更多评估细节。
如果对代码或论文有疑问,可通过电子邮件与项目作者联系;如在使用代码时遇到问题,欢迎在项目的issue板块提交详细的问题说明,以便获得及时的帮助。
若该项目对您的研究有所帮助,请引用SimPO相关论文。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本 描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全 自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文 档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号