Awesome-SSL4TS

Awesome-SSL4TS

自监督学习在时间序列分析中的应用资源

这个项目汇总了时间序列数据自监督学习的最新研究资源,包括相关论文、代码和数据集。资源分为生成式和对比式两大类方法,涵盖了自回归预测、自编码重构、扩散模型生成、采样对比、预测对比和增强对比等技术。该资源列表为时间序列自监督学习研究提供了全面的参考材料。

自监督学习时间序列生成式方法对比学习表示学习Github开源项目

Awesome Self-Supervised Learning for Time Series (SSL4TS)

Awesome PRs Welcome Stars Visits Badge

<!-- ![Forks](https://img.shields.io/github/forks/qingsongedu/awesome-self-supervised-learning-timeseries) -->

A professionally curated list of awesome resources (paper, code, data, etc.) on Self-Supervised Learning for Time Series (SSL4TS), which is the first work to comprehensively and systematically summarize the recent advances of Self-Supervised Learning for modeling time series data to the best of our knowledge.

We will continue to update this list with the newest resources. If you find any missed resources (paper/code) or errors, please feel free to open an issue or make a pull request.

For general AI for Time Series (AI4TS) Papers, Tutorials, and Surveys at the Top AI Conferences and Journals, please check This Repo.

Survey Paper (IEEE TPAMI 2024)

Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects

Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Zhang, Yuxuan Liang, Guansong Pang, Dongjin Song, Shirui Pan.

If you find this repository helpful for your work, please kindly cite our TPAMI'24 paper.

@article{zhang2024ssl4ts, title={Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects}, author={Kexin Zhang and Qingsong Wen and Chaoli Zhang and Rongyao Cai and Ming Jin and Yong Liu and James Zhang and Yuxuan Liang and Guansong Pang and Dongjin Song and Shirui Pan}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year={2024} }

Taxonomy of Self-Supervised Learning for Time Series

<!-- ![xxx](SSL4TS_taxonomy.jpg) -->

<img src="SSL4TS_taxonomy.jpg" width=900 align=middle> <br />

<!-- ![xxx](generative_adversarial_ssl4ts.jpg) -->

<img src="generative_adversarial_ssl4ts.jpg" width=900 align=middle> <br />

<!-- ![xxx](contrastive_ssl4ts.jpg) -->

<img src="contrastive_ssl4ts.jpg" width=900 align=middle> <br />

Category of Self-Supervised Learning for Time Series

Generative-based Methods on SSL4TS

In this category, the pretext task is to generate the expected data based on a given view of the data. In the context of time series modeling, the commonly used pretext tasks include using the past series to forecast the future windows or specific time stamps, using the encoder and decoder to reconstruct the input, and forecasting the unseen part of the masked time series. This section sorts out the existing self-supervised representation learning methods in time series modeling from the perspectives of autoregressive-based forecasting, autoencoder-based reconstruction, and diffusion-based generation. It should be noted that autoencoder-based reconstruction task is also viewed as an unsupervised framework. In the context of SSL, we mainly use the reconstruction task as a pretext task, and the final goal is to obtain the representations through autoencoder models. The illustration of the generative-based SSL for time series is shown in Fig. 3.

Autoregressive-based forecasting

  • Timeseries anomaly detection using temporal hierarchical one-class network, in NeurIPS, 2020. [paper]
  • Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series, in ACM Transactions on Knowledge Discovery from Data, 2022. [paper]
  • Graph neural network-based anomaly detection in multivariate time series, in AAAI, 2021. [paper]
  • Semisupervised time series classification model with self-supervised learning, in Engineering Applications of Artificial Intelligence, 2022. [paper]

Autoencoder-based reconstruction

  • TimeNet: Pre-trained deep recurrent neural network for time series classification, in arXiv, 2017. [paper]
  • Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems, in Scientific Reports, 2019. [paper]
  • Autowarp: Learning a warping distance from unlabeled time series using sequence autoencoders, in NeurIPS, 2018. [paper]
  • Practical approach to asynchronous multivariate time series anomaly detection and localization, in KDD, 2021. [paper]
  • Learning representations for time series clustering, in NeurIPS, 2019. [paper]
  • USAD: Unsupervised anomaly detection on multivariate time series, in KDD, 2020 [paper]
  • Learning sparse latent graph representations for anomaly detection in multivariate time series, in KDD, 2022. [paper]
  • Wind turbine fault detection using a denoising autoencoder with temporal information, in IEEE/ASME Transactions on Mechatronics, 2018 [paper]
  • Denoising temporal convolutional recurrent autoencoders for time series classification, in Information Sciences, 2022. [paper]
  • Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting, in KDD, 2022. [paper]
  • A transformer-based framework for multivariate time series representation learning, in KDD, 2021. [paper]
  • Multi-variate time series forecasting on variable subsets, in KDD, 2022. [paper]
  • TARNet: Task-aware reconstruction for time-series transformer, in KDD, 2022. [paper]
  • Learning latent seasonal-trend representations for time series forecasting, in NeurIPS, 2022. [paper] [repo]
  • Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding, in KDD, 2021. [paper]
  • Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in KDD, 2019. [paper]
  • GRELEN: Multivariate time series anomaly detection from the perspective of graph relational learning, in IJCAI, 2022. [paper]
  • Deep variational graph convolutional recurrent network for multivariate time series anomaly detection, in ICML, 2022. [paper]
  • Heteroscedastic temporal variational autoencoder for irregularly sampled time series, in ICLR, 2022. [paper]
  • Learning from irregularly-sampled time series: A missing data perspective, in ICML, 2020. [paper]
  • TimeMAE: Self-Supervised Representations of Time Series with Decoupled Masked Autoencoders, in arXiv, 2023. [paper] [code]

Diffusion-based generation

  • CSDI: Conditional score-based diffusion models for probabilistic time series imputation, in NeurIPS, 2021. [paper]
  • Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting, in ICML, 2021. [paper]
  • Generative time series forecasting with diffusion, denoise, and disentanglement, in NeurIPS, 2022. [paper]
  • ImDiffusion: Imputed diffusion models for multivariate time series anomaly detection, in arXiv, 2023. [paper]
  • Diffusion-based time series imputation and forecasting with structured state space models, in Transactions on Machine Learning Research, 2022. [paper]
  • Diffload: Uncertainty quantification in load forecasting with diffusion model, in arXiv, 2023. [paper]
  • DiffSTG: Probabilistic spatio-temporal graph forecasting with denoising diffusion models, in SIGSPATIAL, 2023. [paper]
  • PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation, in ICDE, 2024. [paper] [code]

Contrastive-based Methods on SSL4TS

Contrastive learning is a widely used self-supervised learning strategy, showing a strong learning ability in computer vision and natural language processing. Unlike discriminative models that learn a mapping rule to true labels and generative models that try to reconstruct inputs, contrastive-based methods aim to learn data representations by contrasting between positive and negative samples. Specifically, positive samples should have similar representations, while negative samples have different representations. Therefore, the selection of positive samples and negative samples is very important to contrastive-based methods. This section sorts out and summarizes the existing contrastive-based methods in time series modeling according to the selection of positive and negative samples. The illustration of the contrastive-based SSL for time series is shown in Fig. 4.

Sampling contrast

  • Unsupervised scalable representation learning for multivariate time series, in NeurIPS, 2019. [paper]
  • Unsupervised representation learning for time series with temporal neighborhood coding, in ICLR, 2021. [paper]
  • Neighborhood contrastive learning applied to online patient monitoring, in ICML, 2021. [paper]

Prediction contrast

  • Representation learning with contrastive predictive coding, in arXiv, 2018. [paper]
  • Detecting anomalies within time series using local neural transformations, in arXiv, 2022. [paper]
  • Contrastive predictive coding for anomaly detection in multi-variate time series data, in arXiv, 2022. [paper]
  • Time series change point detection with self-supervised contrastive predictive coding, in WWW, 2021. [paper]
  • Time Series Anomaly Detection using Skip-Step Contrastive Predictive Coding, in NeurIPS Workshop: Self-Supervised Learning-Theory and Practice, 2022. [paper]
  • Stock trend prediction with multi-granularity data: A contrastive learning approach with adaptive fusion, in CIKM, 2021. [paper]
  • Time-series representation learning via temporal and contextual contrasting, in IJCAI, 2021. [paper]
  • Self-supervised contrastive representation learning for semi-supervised time-series classification, in arXiv, 2022. [paper]

Augmentation contrast

  • TS2Vec: Towards universal representation of time series, in AAAI, 2022. [paper]
  • CoST: Contrastive learning of disentangled seasonal-trend representations for time series forecasting, in ICLR, 2022. [paper]
  • Unsupervised time-series representation learning with iterative bilinear temporal-spectral fusion, in ICML, 2022. [paper]
  • Self-supervised contrastive pre-training for time series via time-frequency consistency, in NeurIPS, 2022. [paper]
  • Timeclr: A self-supervised contrastive learning framework for univariate time series representation, in Knowledge-Based Systems, 2022. [paper]
  • Clocs: Contrastive learning of cardiac signals across space, time, and patients, in ICML, 2021. [paper]
  • Contrastive learning for unsupervised domain adaptation of time series, in arXiv, 2022. [paper]
  • Valve Stiction Detection Using Multitimescale Feature Consistent Constraint for Time-Series Data, in IEEE/ASME Transactions on Mechatronics, 2022. [paper]
  • Multi-Granularity Residual Learning with Confidence Estimation for Time Series Prediction, in WWW, 2022. [paper]
  • Stock trend prediction with multi-granularity data: A contrastive learning approach with adaptive fusion, in CIKM, 2021. [paper]
  • Self-supervised

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多