Awesome-SSL4TS

Awesome-SSL4TS

自监督学习在时间序列分析中的应用资源

这个项目汇总了时间序列数据自监督学习的最新研究资源,包括相关论文、代码和数据集。资源分为生成式和对比式两大类方法,涵盖了自回归预测、自编码重构、扩散模型生成、采样对比、预测对比和增强对比等技术。该资源列表为时间序列自监督学习研究提供了全面的参考材料。

自监督学习时间序列生成式方法对比学习表示学习Github开源项目

Awesome Self-Supervised Learning for Time Series (SSL4TS)

Awesome PRs Welcome Stars Visits Badge

<!-- ![Forks](https://img.shields.io/github/forks/qingsongedu/awesome-self-supervised-learning-timeseries) -->

A professionally curated list of awesome resources (paper, code, data, etc.) on Self-Supervised Learning for Time Series (SSL4TS), which is the first work to comprehensively and systematically summarize the recent advances of Self-Supervised Learning for modeling time series data to the best of our knowledge.

We will continue to update this list with the newest resources. If you find any missed resources (paper/code) or errors, please feel free to open an issue or make a pull request.

For general AI for Time Series (AI4TS) Papers, Tutorials, and Surveys at the Top AI Conferences and Journals, please check This Repo.

Survey Paper (IEEE TPAMI 2024)

Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects

Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Zhang, Yuxuan Liang, Guansong Pang, Dongjin Song, Shirui Pan.

If you find this repository helpful for your work, please kindly cite our TPAMI'24 paper.

@article{zhang2024ssl4ts, title={Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects}, author={Kexin Zhang and Qingsong Wen and Chaoli Zhang and Rongyao Cai and Ming Jin and Yong Liu and James Zhang and Yuxuan Liang and Guansong Pang and Dongjin Song and Shirui Pan}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year={2024} }

Taxonomy of Self-Supervised Learning for Time Series

<!-- ![xxx](SSL4TS_taxonomy.jpg) -->

<img src="SSL4TS_taxonomy.jpg" width=900 align=middle> <br />

<!-- ![xxx](generative_adversarial_ssl4ts.jpg) -->

<img src="generative_adversarial_ssl4ts.jpg" width=900 align=middle> <br />

<!-- ![xxx](contrastive_ssl4ts.jpg) -->

<img src="contrastive_ssl4ts.jpg" width=900 align=middle> <br />

Category of Self-Supervised Learning for Time Series

Generative-based Methods on SSL4TS

In this category, the pretext task is to generate the expected data based on a given view of the data. In the context of time series modeling, the commonly used pretext tasks include using the past series to forecast the future windows or specific time stamps, using the encoder and decoder to reconstruct the input, and forecasting the unseen part of the masked time series. This section sorts out the existing self-supervised representation learning methods in time series modeling from the perspectives of autoregressive-based forecasting, autoencoder-based reconstruction, and diffusion-based generation. It should be noted that autoencoder-based reconstruction task is also viewed as an unsupervised framework. In the context of SSL, we mainly use the reconstruction task as a pretext task, and the final goal is to obtain the representations through autoencoder models. The illustration of the generative-based SSL for time series is shown in Fig. 3.

Autoregressive-based forecasting

  • Timeseries anomaly detection using temporal hierarchical one-class network, in NeurIPS, 2020. [paper]
  • Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series, in ACM Transactions on Knowledge Discovery from Data, 2022. [paper]
  • Graph neural network-based anomaly detection in multivariate time series, in AAAI, 2021. [paper]
  • Semisupervised time series classification model with self-supervised learning, in Engineering Applications of Artificial Intelligence, 2022. [paper]

Autoencoder-based reconstruction

  • TimeNet: Pre-trained deep recurrent neural network for time series classification, in arXiv, 2017. [paper]
  • Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems, in Scientific Reports, 2019. [paper]
  • Autowarp: Learning a warping distance from unlabeled time series using sequence autoencoders, in NeurIPS, 2018. [paper]
  • Practical approach to asynchronous multivariate time series anomaly detection and localization, in KDD, 2021. [paper]
  • Learning representations for time series clustering, in NeurIPS, 2019. [paper]
  • USAD: Unsupervised anomaly detection on multivariate time series, in KDD, 2020 [paper]
  • Learning sparse latent graph representations for anomaly detection in multivariate time series, in KDD, 2022. [paper]
  • Wind turbine fault detection using a denoising autoencoder with temporal information, in IEEE/ASME Transactions on Mechatronics, 2018 [paper]
  • Denoising temporal convolutional recurrent autoencoders for time series classification, in Information Sciences, 2022. [paper]
  • Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting, in KDD, 2022. [paper]
  • A transformer-based framework for multivariate time series representation learning, in KDD, 2021. [paper]
  • Multi-variate time series forecasting on variable subsets, in KDD, 2022. [paper]
  • TARNet: Task-aware reconstruction for time-series transformer, in KDD, 2022. [paper]
  • Learning latent seasonal-trend representations for time series forecasting, in NeurIPS, 2022. [paper] [repo]
  • Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding, in KDD, 2021. [paper]
  • Robust anomaly detection for multivariate time series through stochastic recurrent neural network, in KDD, 2019. [paper]
  • GRELEN: Multivariate time series anomaly detection from the perspective of graph relational learning, in IJCAI, 2022. [paper]
  • Deep variational graph convolutional recurrent network for multivariate time series anomaly detection, in ICML, 2022. [paper]
  • Heteroscedastic temporal variational autoencoder for irregularly sampled time series, in ICLR, 2022. [paper]
  • Learning from irregularly-sampled time series: A missing data perspective, in ICML, 2020. [paper]
  • TimeMAE: Self-Supervised Representations of Time Series with Decoupled Masked Autoencoders, in arXiv, 2023. [paper] [code]

Diffusion-based generation

  • CSDI: Conditional score-based diffusion models for probabilistic time series imputation, in NeurIPS, 2021. [paper]
  • Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting, in ICML, 2021. [paper]
  • Generative time series forecasting with diffusion, denoise, and disentanglement, in NeurIPS, 2022. [paper]
  • ImDiffusion: Imputed diffusion models for multivariate time series anomaly detection, in arXiv, 2023. [paper]
  • Diffusion-based time series imputation and forecasting with structured state space models, in Transactions on Machine Learning Research, 2022. [paper]
  • Diffload: Uncertainty quantification in load forecasting with diffusion model, in arXiv, 2023. [paper]
  • DiffSTG: Probabilistic spatio-temporal graph forecasting with denoising diffusion models, in SIGSPATIAL, 2023. [paper]
  • PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation, in ICDE, 2024. [paper] [code]

Contrastive-based Methods on SSL4TS

Contrastive learning is a widely used self-supervised learning strategy, showing a strong learning ability in computer vision and natural language processing. Unlike discriminative models that learn a mapping rule to true labels and generative models that try to reconstruct inputs, contrastive-based methods aim to learn data representations by contrasting between positive and negative samples. Specifically, positive samples should have similar representations, while negative samples have different representations. Therefore, the selection of positive samples and negative samples is very important to contrastive-based methods. This section sorts out and summarizes the existing contrastive-based methods in time series modeling according to the selection of positive and negative samples. The illustration of the contrastive-based SSL for time series is shown in Fig. 4.

Sampling contrast

  • Unsupervised scalable representation learning for multivariate time series, in NeurIPS, 2019. [paper]
  • Unsupervised representation learning for time series with temporal neighborhood coding, in ICLR, 2021. [paper]
  • Neighborhood contrastive learning applied to online patient monitoring, in ICML, 2021. [paper]

Prediction contrast

  • Representation learning with contrastive predictive coding, in arXiv, 2018. [paper]
  • Detecting anomalies within time series using local neural transformations, in arXiv, 2022. [paper]
  • Contrastive predictive coding for anomaly detection in multi-variate time series data, in arXiv, 2022. [paper]
  • Time series change point detection with self-supervised contrastive predictive coding, in WWW, 2021. [paper]
  • Time Series Anomaly Detection using Skip-Step Contrastive Predictive Coding, in NeurIPS Workshop: Self-Supervised Learning-Theory and Practice, 2022. [paper]
  • Stock trend prediction with multi-granularity data: A contrastive learning approach with adaptive fusion, in CIKM, 2021. [paper]
  • Time-series representation learning via temporal and contextual contrasting, in IJCAI, 2021. [paper]
  • Self-supervised contrastive representation learning for semi-supervised time-series classification, in arXiv, 2022. [paper]

Augmentation contrast

  • TS2Vec: Towards universal representation of time series, in AAAI, 2022. [paper]
  • CoST: Contrastive learning of disentangled seasonal-trend representations for time series forecasting, in ICLR, 2022. [paper]
  • Unsupervised time-series representation learning with iterative bilinear temporal-spectral fusion, in ICML, 2022. [paper]
  • Self-supervised contrastive pre-training for time series via time-frequency consistency, in NeurIPS, 2022. [paper]
  • Timeclr: A self-supervised contrastive learning framework for univariate time series representation, in Knowledge-Based Systems, 2022. [paper]
  • Clocs: Contrastive learning of cardiac signals across space, time, and patients, in ICML, 2021. [paper]
  • Contrastive learning for unsupervised domain adaptation of time series, in arXiv, 2022. [paper]
  • Valve Stiction Detection Using Multitimescale Feature Consistent Constraint for Time-Series Data, in IEEE/ASME Transactions on Mechatronics, 2022. [paper]
  • Multi-Granularity Residual Learning with Confidence Estimation for Time Series Prediction, in WWW, 2022. [paper]
  • Stock trend prediction with multi-granularity data: A contrastive learning approach with adaptive fusion, in CIKM, 2021. [paper]
  • Self-supervised

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多