awesome-AI-for-time-series-papers

awesome-AI-for-time-series-papers

时间序列分析领域的人工智能前沿研究与资源集锦

这是一个全面收录人工智能在时间序列分析(AI4TS)领域最新研究成果的资源库。项目汇集了顶级AI会议和期刊发表的论文、教程和综述,涉及时间序列、时空数据、事件数据等多个方面。资源库实时更新NeurIPS、ICML、KDD等重要会议的相关论文,为AI4TS领域的研究人员和工程师提供了丰富且及时的学术参考。

时间序列AI机器学习深度学习数据挖掘Github开源项目

AI for Time Series (AI4TS) Papers, Tutorials, and Surveys

Awesome PRs Welcome Stars Visits Badge

<!-- ![Forks](https://img.shields.io/github/forks/qingsongedu/awesome-AI-for-time-series-papers) -->

A professionally curated list of papers (with available code), tutorials, and surveys on recent AI for Time Series Analysis (AI4TS), including Time Series, Spatio-Temporal Data, Event Data, Sequence Data, Temporal Point Processes, etc., at the Top AI Conferences and Journals, which is updated ASAP (the earliest time) once the accepted papers are announced in the corresponding top AI conferences/journals. Hope this list would be helpful for researchers and engineers who are interested in AI for Time Series Analysis.

The top conferences including:

  • Machine Learning: NeurIPS, ICML, ICLR
  • Data Mining: KDD, WWW
  • Artificial Intelligence: AAAI, IJCAI
  • Data Management: SIGMOD, VLDB, ICDE
  • Misc (selected): AISTAT, CIKM, ICDM, WSDM, SIGIR, ICASSP, CVPR, ICCV, etc.

The top journals including (mainly for survey papers): CACM, PIEEE, TPAMI, TKDE, TNNLS, TITS, TIST, SPM, JMLR, JAIR, CSUR, DMKD, KAIS, IJF, arXiv(selected), etc.

If you find any missed resources (paper/code) or errors, please feel free to open an issue or make a pull request.

For general Recent AI Advances: Tutorials and Surveys in various areas (DL, ML, DM, CV, NLP, Speech, etc.) at the Top AI Conferences and Journals, please check This Repo.

Main Recent Update Note

  • [Mar. 04, 2024] Add papers accepted by ICLR'24, AAAI'24, WWW'24!
  • [Jul. 05, 2023] Add papers accepted by KDD'23!
  • [Jun. 20, 2023] Add papers accepted by ICML'23!
  • [Feb. 07, 2023] Add papers accepted by ICLR'23 and AAAI'23!
  • [Sep. 18, 2022] Add papers accepted by NeurIPS'22!
  • [Jul. 14, 2022] Add papers accepted by KDD'22!
  • [Jun. 02, 2022] Add papers accepted by ICML'22, ICLR'22, AAAI'22, IJCAI'22!

Table of Contents

AI4TS Tutorials and Surveys

AI4TS Tutorials

  • Out-of-Distribution Generalization in Time Series, in AAAI 2024. [Link]
  • Robust Time Series Analysis and Applications: An Interdisciplinary Approach, in ICDM 2023. [Link]
  • Robust Time Series Analysis and Applications: An Industrial Perspective, in KDD 2022. [Link]
  • Time Series in Healthcare: Challenges and Solutions, in AAAI 2022. [Link]
  • Time Series Anomaly Detection: Tools, Techniques and Tricks, in DASFAA 2022. [Link]
  • Modern Aspects of Big Time Series Forecasting, in IJCAI 2021. [Link]
  • Explainable AI for Societal Event Predictions: Foundations, Methods, and Applications, in AAAI 2021. [Link]
  • Physics-Guided AI for Large-Scale Spatiotemporal Data, in KDD 2021. [Link]
  • Deep Learning for Anomaly Detection, in KDD & WSDM 2020. [Link1] [Link2] [Link3]
  • Building Forecasting Solutions Using Open-Source and Azure Machine Learning, in KDD 2020. [Link]
  • Interpreting and Explaining Deep Neural Networks: A Perspective on Time Series Data, KDD 2020. [Link]
  • Forecasting Big Time Series: Theory and Practice, KDD 2019. [Link]
  • Spatio-Temporal Event Forecasting and Precursor Identification, KDD 2019. [Link]
  • Modeling and Applications for Temporal Point Processes, KDD 2019. [Link1] [Link2]

AI4TS Surveys

General Time Series Survey

  • What Can Large Language Models Tell Us about Time Series Analysis, in arXiv 2024. [paper]
  • Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook, in arXiv 2023. [paper] [Website]
  • Deep Learning for Multivariate Time Series Imputation: A Survey, in arXiv 2024. [paper] [Website]
  • Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects, in arXiv 2023. [paper] [Website]
  • A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection, in arXiv 2023. [paper] [Website]
  • Transformers in Time Series: A Survey, in IJCAI 2023. [paper] [GitHub Repo]
  • Time series data augmentation for deep learning: a survey, in IJCAI 2021. [paper]
  • Neural temporal point processes: a review, in IJCAI 2021. [paper]
  • Causal inference for time series analysis: problems, methods and evaluation, in KAIS 2022. [paper]
  • Survey and Evaluation of Causal Discovery Methods for Time Series, in JAIR 2022. [paper]
  • Deep learning for spatio-temporal data mining: A survey, in TKDE 2020. [paper]
  • Generative Adversarial Networks for Spatio-temporal Data: A Survey, in TIST 2022. [paper]
  • Spatio-Temporal Data Mining: A Survey of Problems and Methods, in CSUR 2018. [paper]
  • A Survey on Principles, Models and Methods for Learning from Irregularly Sampled Time Series, in NeurIPS Workshop 2020. [paper]
  • Count Time-Series Analysis: A signal processing perspective, in SPM 2019. [paper]
  • Wavelet transform application for/in non-stationary time-series analysis: a review, in Applied Sciences 2019. [paper]
  • Granger Causality: A Review and Recent Advances, in Annual Review of Statistics and Its Application 2014. [paper]
  • A Review of Deep Learning Methods for Irregularly Sampled Medical Time Series Data, in arXiv 2020. [paper]
  • Beyond Just Vision: A Review on Self-Supervised Representation Learning on Multimodal and Temporal Data, in arXiv 2022. [paper]
  • A Survey on Time-Series Pre-Trained Models, in arXiv 2023. [paper] [link]
  • Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects, in arXiv 2023. [paper] [Website]
  • A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection, in arXiv 2023. [paper] [Website]

Time Series Forecasting Survey

  • Forecasting: theory and practice, in IJF 2022. [paper]
  • Time-series forecasting with deep learning: a survey, in Philosophical Transactions of the Royal Society A 2021. [paper]
  • Deep Learning on Traffic Prediction: Methods, Analysis, and Future Directions, in TITS 2022. [paper]
  • Event prediction in the big data era: A systematic survey, in CSUR 2022. [paper]
  • A brief history of forecasting competitions, in IJF 2020. [paper]
  • Neural forecasting: Introduction and literature overview, in arXiv 2020. [paper]
  • Probabilistic forecasting, in Annual Review of Statistics and Its Application 2014. [paper]

Time Series Anomaly Detection Survey

  • A review on outlier/anomaly detection in time series data, in CSUR 2021. [paper]
  • Anomaly detection for IoT time-series data: A survey,

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多