raft

raft

可复用CUDA函数库加速向量搜索与机器学习

RAFT是一个CUDA加速的C++头文件库,为机器学习和信息检索提供基础算法和原语。它实现了先进的向量相似度搜索方法,包括暴力搜索、IVF-Flat、IVF-PQ和CAGRA。RAFT还提供可重用原语,用于构建涵盖数据生成、模型评估、分类回归、聚类等领域的机器学习算法。通过跨项目复用和集中核心计算,RAFT加速了算法开发,并使未来优化能广泛应用于各种算法。

RAFTGPU加速机器学习向量搜索CUDAGithub开源项目

<div align="left"><img src="https://rapids.ai/assets/images/rapids_logo.png" width="90px"/> RAFT: Reusable Accelerated Functions and Tools for Vector Search and More</div>

[!IMPORTANT] The vector search and clustering algorithms in RAFT are being migrated to a new library dedicated to vector search called cuVS. We will continue to support the vector search algorithms in RAFT during this move, but will no longer update them after the RAPIDS 24.06 (June) release. We plan to complete the migration by RAPIDS 24.08 (August) release.

RAFT tech stack

Contents

<hr>
  1. Useful Resources
  2. What is RAFT?
  3. Use cases
  4. Is RAFT right for me?
  5. Getting Started
  6. Installing RAFT
  7. Codebase structure and contents
  8. Contributing
  9. References
<hr>

Useful Resources

What is RAFT?

RAFT contains fundamental widely-used algorithms and primitives for machine learning and information retrieval. The algorithms are CUDA-accelerated and form building blocks for more easily writing high performance applications.

By taking a primitives-based approach to algorithm development, RAFT

  • accelerates algorithm construction time
  • reduces the maintenance burden by maximizing reuse across projects, and
  • centralizes core reusable computations, allowing future optimizations to benefit all algorithms that use them.

While not exhaustive, the following general categories help summarize the accelerated functions in RAFT:

CategoryAccelerated Functions in RAFT
Nearest Neighborsvector search, neighborhood graph construction, epsilon neighborhoods, pairwise distances
Basic Clusteringspectral clustering, hierarchical clustering, k-means
Solverscombinatorial optimization, iterative solvers
Data Formatssparse & dense, conversions, data generation
Dense Operationslinear algebra, matrix and vector operations, reductions, slicing, norms, factorization, least squares, svd & eigenvalue problems
Sparse Operationslinear algebra, eigenvalue problems, slicing, norms, reductions, factorization, symmetrization, components & labeling
Statisticssampling, moments and summary statistics, metrics, model evaluation
Tools & Utilitiescommon tools and utilities for developing CUDA applications, multi-node multi-gpu infrastructure

RAFT is a C++ header-only template library with an optional shared library that

  1. can speed up compile times for common template types, and
  2. provides host-accessible "runtime" APIs, which don't require a CUDA compiler to use

In addition being a C++ library, RAFT also provides 2 Python libraries:

  • pylibraft - lightweight Python wrappers around RAFT's host-accessible "runtime" APIs.
  • raft-dask - multi-node multi-GPU communicator infrastructure for building distributed algorithms on the GPU with Dask.

RAFT is a C++ header-only template library with optional shared library and lightweight Python wrappers

Use cases

Vector Similarity Search

RAFT contains state-of-the-art implementations of approximate nearest neighbors search (ANNS) algorithms on the GPU, such as:

  • Brute force. Performs a brute force nearest neighbors search without an index.
  • IVF-Flat and IVF-PQ. Use an inverted file index structure to map contents to their locations. IVF-PQ additionally uses product quantization to reduce the memory usage of vectors. These methods were originally popularized by the FAISS library.
  • CAGRA (Cuda Anns GRAph-based). Uses a fast ANNS graph construction and search implementation optimized for the GPU. CAGRA outperforms state-of-the art CPU methods (i.e. HNSW) for large batch queries, single queries, and graph construction time.

Projects that use the RAFT ANNS algorithms for accelerating vector search include: Milvus, Redis, and Faiss.

Please see the example Jupyter notebook to get started RAFT for vector search in Python.

Information Retrieval

RAFT contains a catalog of reusable primitives for composing algorithms that require fast neighborhood computations, such as

  1. Computing distances between vectors and computing kernel gramm matrices
  2. Performing ball radius queries for constructing epsilon neighborhoods
  3. Clustering points to partition a space for smaller and faster searches
  4. Constructing neighborhood "connectivities" graphs from dense vectors

Machine Learning

RAFT's primitives are used in several RAPIDS libraries, including cuML, cuGraph, and cuOpt to build many end-to-end machine learning algorithms that span a large spectrum of different applications, including

  • data generation
  • model evaluation
  • classification and regression
  • clustering
  • manifold learning
  • dimensionality reduction.

RAFT is also used by the popular collaborative filtering library implicit for recommender systems.

Is RAFT right for me?

RAFT contains low-level primitives for accelerating applications and workflows. Data source providers and application developers may find specific tools -- like ANN algorithms -- very useful. RAFT is not intended to be used directly by data scientists for discovery and experimentation. For data science tools, please see the RAPIDS website.

Getting started

RAPIDS Memory Manager (RMM)

RAFT relies heavily on RMM which eases the burden of configuring different allocation strategies globally across the libraries that use it.

Multi-dimensional Arrays

The APIs in RAFT accept the mdspan multi-dimensional array view for representing data in higher dimensions similar to the ndarray in the Numpy Python library. RAFT also contains the corresponding owning mdarray structure, which simplifies the allocation and management of multi-dimensional data in both host and device (GPU) memory.

The mdarray forms a convenience layer over RMM and can be constructed in RAFT using a number of different helper functions:

#include <raft/core/device_mdarray.hpp> int n_rows = 10; int n_cols = 10; auto scalar = raft::make_device_scalar<float>(handle, 1.0); auto vector = raft::make_device_vector<float>(handle, n_cols); auto matrix = raft::make_device_matrix<float>(handle, n_rows, n_cols);

C++ Example

Most of the primitives in RAFT accept a raft::device_resources object for the management of resources which are expensive to create, such CUDA streams, stream pools, and handles to other CUDA libraries like cublas and cusolver.

The example below demonstrates creating a RAFT handle and using it with device_matrix and device_vector to allocate memory, generating random clusters, and computing pairwise Euclidean distances:

#include <raft/core/device_resources.hpp> #include <raft/core/device_mdarray.hpp> #include <raft/random/make_blobs.cuh> #include <raft/distance/distance.cuh> raft::device_resources handle; int n_samples = 5000; int n_features = 50; auto input = raft::make_device_matrix<float, int>(handle, n_samples, n_features); auto labels = raft::make_device_vector<int, int>(handle, n_samples); auto output = raft::make_device_matrix<float, int>(handle, n_samples, n_samples); raft::random::make_blobs(handle, input.view(), labels.view()); auto metric = raft::distance::DistanceType::L2SqrtExpanded; raft::distance::pairwise_distance(handle, input.view(), input.view(), output.view(), metric);

It's also possible to create raft::device_mdspan views to invoke the same API with raw pointers and shape information:

#include <raft/core/device_resources.hpp> #include <raft/core/device_mdspan.hpp> #include <raft/random/make_blobs.cuh> #include <raft/distance/distance.cuh> raft::device_resources handle; int n_samples = 5000; int n_features = 50; float *input; int *labels; float *output; ... // Allocate input, labels, and output pointers ... auto input_view = raft::make_device_matrix_view(input, n_samples, n_features); auto labels_view = raft::make_device_vector_view(labels, n_samples); auto output_view = raft::make_device_matrix_view(output, n_samples, n_samples); raft::random::make_blobs(handle, input_view, labels_view); auto metric = raft::distance::DistanceType::L2SqrtExpanded; raft::distance::pairwise_distance(handle, input_view, input_view, output_view, metric);

Python Example

The pylibraft package contains a Python API for RAFT algorithms and primitives. pylibraft integrates nicely into other libraries by being very lightweight with minimal dependencies and accepting any object that supports the __cuda_array_interface__, such as CuPy's ndarray. The number of RAFT algorithms exposed in this package is continuing to grow from release to release.

The example below demonstrates computing the pairwise Euclidean distances between CuPy arrays. Note that CuPy is not a required dependency for pylibraft.

import cupy as cp from pylibraft.distance import pairwise_distance n_samples = 5000 n_features = 50 in1 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) in2 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) output = pairwise_distance(in1, in2, metric="euclidean")

The output array in the above example is of type raft.common.device_ndarray, which supports cuda_array_interface making it interoperable with other libraries like CuPy, Numba, PyTorch and RAPIDS cuDF that also support it. CuPy supports DLPack, which also enables zero-copy conversion from raft.common.device_ndarray to JAX and Tensorflow.

Below is an example of converting the output pylibraft.device_ndarray to a CuPy array:

cupy_array = cp.asarray(output)

And converting to a PyTorch tensor:

import torch torch_tensor = torch.as_tensor(output, device='cuda')

Or converting to a RAPIDS cuDF dataframe:

cudf_dataframe = cudf.DataFrame(output)

When the corresponding library has been installed and available in your environment, this conversion can also be done automatically by all RAFT compute APIs by setting a global configuration option:

import pylibraft.config pylibraft.config.set_output_as("cupy") # All compute APIs will return cupy arrays pylibraft.config.set_output_as("torch") # All compute APIs will return torch tensors

You can also specify a callable that accepts a pylibraft.common.device_ndarray and performs a custom conversion. The following example converts all output to numpy arrays:

pylibraft.config.set_output_as(lambda device_ndarray: return device_ndarray.copy_to_host())

pylibraft also supports writing to a pre-allocated output array so any __cuda_array_interface__ supported array can be written to in-place:

import cupy as cp from pylibraft.distance import pairwise_distance n_samples = 5000 n_features = 50 in1 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) in2 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) output = cp.empty((n_samples, n_samples), dtype=cp.float32) pairwise_distance(in1, in2, out=output, metric="euclidean")

Installing

RAFT's C++ and Python libraries can both be installed through Conda and the Python libraries through Pip.

Installing C++ and Python through Conda

The easiest way to install RAFT is through conda and several packages are provided.

  • libraft-headers C++ headers
  • libraft (optional) C++ shared library containing pre-compiled template instantiations and runtime API.
  • pylibraft (optional) Python library
  • raft-dask (optional) Python library for deployment of multi-node multi-GPU algorithms that use the RAFT raft::comms abstraction layer in Dask clusters.
  • raft-ann-bench (optional) Benchmarking tool for easily producing benchmarks that compare RAFT's vector search algorithms against other state-of-the-art implementations.
  • raft-ann-bench-cpu (optional) Reproducible benchmarking tool similar to above, but doesn't require CUDA to be installed on the machine. Can be used to test in environments with competitive CPUs.

Use the following command, depending on your CUDA version, to install all of the RAFT packages with conda (replace rapidsai with rapidsai-nightly to install more up-to-date but less stable nightly packages). mamba is preferred over the conda command.

# for CUDA 11.8 mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-version=11.8
# for CUDA 12.5 mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-version=12.5

Note that the above commands will also install libraft-headers and libraft.

You can also install the conda packages individually using the mamba command above. For example, if you'd like to install RAFT's headers and pre-compiled shared library to use in your project:

# for CUDA 12.5 mamba install -c rapidsai -c conda-forge -c nvidia libraft libraft-headers cuda-version=12.5

If installing the C++ APIs please see using libraft for more information on using the pre-compiled shared library. You can also refer to the example C++ template project for a ready-to-go CMake configuration that you can drop into your project and build against installed RAFT development artifacts above.

Installing Python through Pip

pylibraft and raft-dask both have experimental packages that can be installed through pip:

pip install pylibraft-cu11 --extra-index-url=https://pypi.nvidia.com pip install raft-dask-cu11 --extra-index-url=https://pypi.nvidia.com

These packages statically build RAFT's pre-compiled instantiations and so the C++ headers and pre-compiled shared library won't be readily available to use in your code.

The build instructions contain more details on building RAFT from source and including it in downstream projects. You can also find a more comprehensive version of the above CPM code snippet the Building RAFT C++ and Python from source section of the build instructions.

You can find an example RAFT project template in the cpp/template directory, which demonstrates how to build a new application with RAFT or incorporate RAFT into an existing CMake project.

Contributing

If you are interested in contributing to the RAFT project, please read our Contributing guidelines. Refer to the Developer Guide for details on the developer guidelines, workflows, and principals.

References

When citing RAFT generally, please consider referencing this Github project.

@misc{rapidsai, title={Rapidsai/raft: RAFT contains fundamental widely-used algorithms and primitives for data science, Graph and machine learning.}, url={https://github.com/rapidsai/raft}, journal={GitHub}, publisher={Nvidia RAPIDS}, author={Rapidsai}, year={2022} }

If citing the sparse pairwise distances API, please consider using the following bibtex:

@article{nolet2021semiring,

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多