[!IMPORTANT] The vector search and clustering algorithms in RAFT are being migrated to a new library dedicated to vector search called cuVS. We will continue to support the vector search algorithms in RAFT during this move, but will no longer update them after the RAPIDS 24.06 (June) release. We plan to complete the migration by RAPIDS 24.08 (August) release.
RAFT contains fundamental widely-used algorithms and primitives for machine learning and information retrieval. The algorithms are CUDA-accelerated and form building blocks for more easily writing high performance applications.
By taking a primitives-based approach to algorithm development, RAFT
While not exhaustive, the following general categories help summarize the accelerated functions in RAFT:
Category | Accelerated Functions in RAFT |
---|---|
Nearest Neighbors | vector search, neighborhood graph construction, epsilon neighborhoods, pairwise distances |
Basic Clustering | spectral clustering, hierarchical clustering, k-means |
Solvers | combinatorial optimization, iterative solvers |
Data Formats | sparse & dense, conversions, data generation |
Dense Operations | linear algebra, matrix and vector operations, reductions, slicing, norms, factorization, least squares, svd & eigenvalue problems |
Sparse Operations | linear algebra, eigenvalue problems, slicing, norms, reductions, factorization, symmetrization, components & labeling |
Statistics | sampling, moments and summary statistics, metrics, model evaluation |
Tools & Utilities | common tools and utilities for developing CUDA applications, multi-node multi-gpu infrastructure |
RAFT is a C++ header-only template library with an optional shared library that
In addition being a C++ library, RAFT also provides 2 Python libraries:
pylibraft
- lightweight Python wrappers around RAFT's host-accessible "runtime" APIs.raft-dask
- multi-node multi-GPU communicator infrastructure for building distributed algorithms on the GPU with Dask.RAFT contains state-of-the-art implementations of approximate nearest neighbors search (ANNS) algorithms on the GPU, such as:
Projects that use the RAFT ANNS algorithms for accelerating vector search include: Milvus, Redis, and Faiss.
Please see the example Jupyter notebook to get started RAFT for vector search in Python.
RAFT contains a catalog of reusable primitives for composing algorithms that require fast neighborhood computations, such as
RAFT's primitives are used in several RAPIDS libraries, including cuML, cuGraph, and cuOpt to build many end-to-end machine learning algorithms that span a large spectrum of different applications, including
RAFT is also used by the popular collaborative filtering library implicit for recommender systems.
RAFT contains low-level primitives for accelerating applications and workflows. Data source providers and application developers may find specific tools -- like ANN algorithms -- very useful. RAFT is not intended to be used directly by data scientists for discovery and experimentation. For data science tools, please see the RAPIDS website.
RAFT relies heavily on RMM which eases the burden of configuring different allocation strategies globally across the libraries that use it.
The APIs in RAFT accept the mdspan multi-dimensional array view for representing data in higher dimensions similar to the ndarray
in the Numpy Python library. RAFT also contains the corresponding owning mdarray
structure, which simplifies the allocation and management of multi-dimensional data in both host and device (GPU) memory.
The mdarray
forms a convenience layer over RMM and can be constructed in RAFT using a number of different helper functions:
#include <raft/core/device_mdarray.hpp> int n_rows = 10; int n_cols = 10; auto scalar = raft::make_device_scalar<float>(handle, 1.0); auto vector = raft::make_device_vector<float>(handle, n_cols); auto matrix = raft::make_device_matrix<float>(handle, n_rows, n_cols);
Most of the primitives in RAFT accept a raft::device_resources
object for the management of resources which are expensive to create, such CUDA streams, stream pools, and handles to other CUDA libraries like cublas
and cusolver
.
The example below demonstrates creating a RAFT handle and using it with device_matrix
and device_vector
to allocate memory, generating random clusters, and computing
pairwise Euclidean distances:
#include <raft/core/device_resources.hpp> #include <raft/core/device_mdarray.hpp> #include <raft/random/make_blobs.cuh> #include <raft/distance/distance.cuh> raft::device_resources handle; int n_samples = 5000; int n_features = 50; auto input = raft::make_device_matrix<float, int>(handle, n_samples, n_features); auto labels = raft::make_device_vector<int, int>(handle, n_samples); auto output = raft::make_device_matrix<float, int>(handle, n_samples, n_samples); raft::random::make_blobs(handle, input.view(), labels.view()); auto metric = raft::distance::DistanceType::L2SqrtExpanded; raft::distance::pairwise_distance(handle, input.view(), input.view(), output.view(), metric);
It's also possible to create raft::device_mdspan
views to invoke the same API with raw pointers and shape information:
#include <raft/core/device_resources.hpp> #include <raft/core/device_mdspan.hpp> #include <raft/random/make_blobs.cuh> #include <raft/distance/distance.cuh> raft::device_resources handle; int n_samples = 5000; int n_features = 50; float *input; int *labels; float *output; ... // Allocate input, labels, and output pointers ... auto input_view = raft::make_device_matrix_view(input, n_samples, n_features); auto labels_view = raft::make_device_vector_view(labels, n_samples); auto output_view = raft::make_device_matrix_view(output, n_samples, n_samples); raft::random::make_blobs(handle, input_view, labels_view); auto metric = raft::distance::DistanceType::L2SqrtExpanded; raft::distance::pairwise_distance(handle, input_view, input_view, output_view, metric);
The pylibraft
package contains a Python API for RAFT algorithms and primitives. pylibraft
integrates nicely into other libraries by being very lightweight with minimal dependencies and accepting any object that supports the __cuda_array_interface__
, such as CuPy's ndarray. The number of RAFT algorithms exposed in this package is continuing to grow from release to release.
The example below demonstrates computing the pairwise Euclidean distances between CuPy arrays. Note that CuPy is not a required dependency for pylibraft
.
import cupy as cp from pylibraft.distance import pairwise_distance n_samples = 5000 n_features = 50 in1 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) in2 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) output = pairwise_distance(in1, in2, metric="euclidean")
The output
array in the above example is of type raft.common.device_ndarray
, which supports cuda_array_interface making it interoperable with other libraries like CuPy, Numba, PyTorch and RAPIDS cuDF that also support it. CuPy supports DLPack, which also enables zero-copy conversion from raft.common.device_ndarray
to JAX and Tensorflow.
Below is an example of converting the output pylibraft.device_ndarray
to a CuPy array:
cupy_array = cp.asarray(output)
And converting to a PyTorch tensor:
import torch torch_tensor = torch.as_tensor(output, device='cuda')
Or converting to a RAPIDS cuDF dataframe:
cudf_dataframe = cudf.DataFrame(output)
When the corresponding library has been installed and available in your environment, this conversion can also be done automatically by all RAFT compute APIs by setting a global configuration option:
import pylibraft.config pylibraft.config.set_output_as("cupy") # All compute APIs will return cupy arrays pylibraft.config.set_output_as("torch") # All compute APIs will return torch tensors
You can also specify a callable
that accepts a pylibraft.common.device_ndarray
and performs a custom conversion. The following example converts all output to numpy
arrays:
pylibraft.config.set_output_as(lambda device_ndarray: return device_ndarray.copy_to_host())
pylibraft
also supports writing to a pre-allocated output array so any __cuda_array_interface__
supported array can be written to in-place:
import cupy as cp from pylibraft.distance import pairwise_distance n_samples = 5000 n_features = 50 in1 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) in2 = cp.random.random_sample((n_samples, n_features), dtype=cp.float32) output = cp.empty((n_samples, n_samples), dtype=cp.float32) pairwise_distance(in1, in2, out=output, metric="euclidean")
RAFT's C++ and Python libraries can both be installed through Conda and the Python libraries through Pip.
The easiest way to install RAFT is through conda and several packages are provided.
libraft-headers
C++ headerslibraft
(optional) C++ shared library containing pre-compiled template instantiations and runtime API.pylibraft
(optional) Python libraryraft-dask
(optional) Python library for deployment of multi-node multi-GPU algorithms that use the RAFT raft::comms
abstraction layer in Dask clusters.raft-ann-bench
(optional) Benchmarking tool for easily producing benchmarks that compare RAFT's vector search algorithms against other state-of-the-art implementations.raft-ann-bench-cpu
(optional) Reproducible benchmarking tool similar to above, but doesn't require CUDA to be installed on the machine. Can be used to test in environments with competitive CPUs.Use the following command, depending on your CUDA version, to install all of the RAFT packages with conda (replace rapidsai
with rapidsai-nightly
to install more up-to-date but less stable nightly packages). mamba
is preferred over the conda
command.
# for CUDA 11.8 mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-version=11.8
# for CUDA 12.5 mamba install -c rapidsai -c conda-forge -c nvidia raft-dask pylibraft cuda-version=12.5
Note that the above commands will also install libraft-headers
and libraft
.
You can also install the conda packages individually using the mamba
command above. For example, if you'd like to install RAFT's headers and pre-compiled shared library to use in your project:
# for CUDA 12.5 mamba install -c rapidsai -c conda-forge -c nvidia libraft libraft-headers cuda-version=12.5
If installing the C++ APIs please see using libraft for more information on using the pre-compiled shared library. You can also refer to the example C++ template project for a ready-to-go CMake configuration that you can drop into your project and build against installed RAFT development artifacts above.
pylibraft
and raft-dask
both have experimental packages that can be installed through pip:
pip install pylibraft-cu11 --extra-index-url=https://pypi.nvidia.com pip install raft-dask-cu11 --extra-index-url=https://pypi.nvidia.com
These packages statically build RAFT's pre-compiled instantiations and so the C++ headers and pre-compiled shared library won't be readily available to use in your code.
The build instructions contain more details on building RAFT from source and including it in downstream projects. You can also find a more comprehensive version of the above CPM code snippet the Building RAFT C++ and Python from source section of the build instructions.
You can find an example RAFT project template in the cpp/template
directory, which demonstrates how to build a new application with RAFT or incorporate RAFT into an existing CMake project.
If you are interested in contributing to the RAFT project, please read our Contributing guidelines. Refer to the Developer Guide for details on the developer guidelines, workflows, and principals.
When citing RAFT generally, please consider referencing this Github project.
@misc{rapidsai, title={Rapidsai/raft: RAFT contains fundamental widely-used algorithms and primitives for data science, Graph and machine learning.}, url={https://github.com/rapidsai/raft}, journal={GitHub}, publisher={Nvidia RAPIDS}, author={Rapidsai}, year={2022} }
If citing the sparse pairwise distances API, please consider using the following bibtex:
@article{nolet2021semiring,
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号