Project Icon

Awesome-Reasoning-Foundation-Models

基础模型推理能力资源汇总

本资源列表汇总了基础模型推理能力相关内容,包括语言、视觉和多模态基础模型,以及常识、数学、逻辑等多领域推理任务应用。同时概述了预训练、微调、对齐训练等推理技术,为研究人员和开发者提供全面参考。

Awesome-Reasoning-Foundation-Models

Awesome DOI arXiv

overview

survey.pdf | A curated list of awesome large AI models, or foundation models, for reasoning.

We organize the current foundation models into three categories: language foundation models, vision foundation models, and multimodal foundation models. Further, we elaborate the foundation models in reasoning tasks, including commonsense, mathematical, logical, causal, visual, audio, multimodal, agent reasoning, etc. Reasoning techniques, including pre-training, fine-tuning, alignment training, mixture of experts, in-context learning, and autonomous agent, are also summarized.

We welcome contributions to this repository to add more resources. Please submit a pull request if you want to contribute! See CONTRIBUTING.

Table of Contents

table of contents

0 Survey

overview

This repository is primarily based on the following paper:

A Survey of Reasoning with Foundation Models

Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu, Mingyu Ding, Hongyang Li, Mengzhe Geng, Yue Wu, Wenhai Wang, Junsong Chen, Zhangyue Yin, Xiaozhe Ren, Jie Fu, Junxian He, Wu Yuan, Qi Liu, Xihui Liu, Yu Li, Hao Dong, Yu Cheng, Ming Zhang, Pheng Ann Heng, Jifeng Dai, Ping Luo, Jingdong Wang, Ji-Rong Wen, Xipeng Qiu, Yike Guo, Hui Xiong, Qun Liu, and Zhenguo Li

If you find this repository helpful, please consider citing:

@article{sun2023survey,
  title={A Survey of Reasoning with Foundation Models},
  author={Sun, Jiankai and Zheng, Chuanyang and Xie, Enze and Liu, Zhengying and Chu, Ruihang and Qiu, Jianing and Xu, Jiaqi and Ding, Mingyu and Li, Hongyang and Geng, Mengzhe and others},
  journal={arXiv preprint arXiv:2312.11562},
  year={2023}
}

1 Relevant Surveys and Links

relevant surveys

(Back-to-Top)

  • Combating Misinformation in the Age of LLMs: Opportunities and Challenges - [arXiv] [Link]

  • The Rise and Potential of Large Language Model Based Agents: A Survey - [arXiv] [Link]

  • Multimodal Foundation Models: From Specialists to General-Purpose Assistants - [arXiv] [Tutorial]

  • A Survey on Multimodal Large Language Models - [arXiv] [Link]

  • Interactive Natural Language Processing - [arXiv] [Link]

  • A Survey of Large Language Models - [arXiv] [Link]

  • Self-Supervised Multimodal Learning: A Survey - [arXiv] [Link]

  • Large AI Models in Health Informatics: Applications, Challenges, and the Future - [arXiv] [Paper] [Link]

  • Towards Reasoning in Large Language Models: A Survey - [arXiv] [Paper] [Link]

  • Reasoning with Language Model Prompting: A Survey - [arXiv] [Paper] [Link]

  • Awesome Multimodal Reasoning - [Link]

2 Foundation Models

foundation models

(Back-to-Top)

foundation_models

Table of Contents - 2

foundation models (table of contents)

(Back-to-Top)

2.1 Language Foundation Models

LFMs

Foundation Models (Back-to-Top)


2.2 Vision Foundation Models

VFMs

Foundation Models (Back-to-Top)

  • 2024/01 | Depth Anything | Yang et al. citations Star
    Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
    [arXiv] [paper] [code] [project]

  • 2023/05 | SAA+ | Cao et al. citations Star
    Segment Any Anomaly without Training via Hybrid Prompt Regularization

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号