MLAlgorithms

MLAlgorithms

机器学习算法从零实现的简洁教程

该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。

Machine learning algorithmsPythonDeep learningSupport vector machineRandom ForestsGithub开源项目

MLAlgorithms 项目介绍

MLAlgorithms 是一个集合了多种机器学习算法的开源项目。这个项目的主要目标是为那些想要深入学习机器学习算法内部原理或者从头实现这些算法的人提供帮助。与其他优化过的库相比,MLAlgorithms 的代码更易于理解和使用。

项目特点

简洁清晰的实现

所有的算法都使用 Python 实现,并且依赖于 numpy、scipy 和 autograd 这些常用的科学计算库。这种实现方式使得代码结构清晰,易于阅读和理解。

丰富的算法覆盖

MLAlgorithms 项目包含了多种常见的机器学习算法,涵盖了以下几个主要领域:

  1. 深度学习:包括多层感知机(MLP)、卷积神经网络(CNN)、循环神经网络(RNN)和长短期记忆网络(LSTM)。
  2. 线性模型:包括线性回归和逻辑回归。
  3. 集成学习:实现了随机森林和梯度提升树(GBDT、GBRT、GBM、XGBoost)。
  4. 支持向量机(SVM):包括线性核、多项式核和 RBF 核。
  5. 聚类算法:K-均值和高斯混合模型。
  6. 其他经典算法:K-近邻、朴素贝叶斯、主成分分析(PCA)等。
  7. 特殊算法:因子分解机、受限玻尔兹曼机(RBM)、t-分布随机邻居嵌入(t-SNE)等。
  8. 强化学习:实现了深度 Q 学习算法。

安装和使用

项目的安装过程非常简单,用户可以通过 Git 克隆仓库,然后使用 pip 安装所需的依赖。项目还提供了 Docker 支持,方便用户在容器环境中运行示例。

贡献和参与

MLAlgorithms 是一个开放的项目,欢迎所有人参与贡献。无论是改进现有代码、完善文档,还是实现新的算法,项目组都非常欢迎。对于较大的改动,建议先开一个 issue 来讨论。

总结

MLAlgorithms 项目为机器学习爱好者和研究者提供了一个很好的学习和实践平台。通过研究这些算法的简洁实现,用户可以更好地理解机器学习算法的核心原理,为进一步的学习和研究打下坚实的基础。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多