awesome-single-cell

awesome-single-cell

综合单细胞数据分析工具和方法清单

该资源列表汇集了单细胞数据分析的软件包和方法,包括RNA-seq、ATAC-seq等数据类型。涵盖质量控制、基因网络识别、细胞聚类、降维和轨迹推断等分析步骤。同时提供教程、工作流程、网络门户和相关文献链接。列表持续更新,为单细胞研究提供全面参考。

单细胞RNA测序生物信息学基因表达分析细胞群体分析软件包Github开源项目

awesome-single-cell

List of software packages (and the people developing these methods) for single-cell data analysis, including RNA-seq, ATAC-seq, etc. Contributions welcome...

Citation

DOI

Contents

Software packages

RNA-seq

  • alevin-fry - [Rust] - 🐟 Rapid, accurate and memory-frugal preprocessing of single-cell and single-nucleus RNA-seq data.
  • anchor - [Python] - ⚓ Find bimodal, unimodal, and multimodal features in your data
  • ascend - [R] - ascend is an R package comprised of fast, streamlined analysis functions optimized to address the statistical challenges of single cell RNA-seq. The package incorporates novel and established methods to provide a flexible framework to perform filtering, quality control, normalization, dimension reduction, clustering, differential expression and a wide-range of plotting.
  • bigSCale - [matlab] - An analytical framework for big-scale single cell data.
  • bonvoyage - [Python] - 📐 Transform percentage-based units into a 2d space to evaluate changes in distribution with both magnitude and direction.
  • bustools - [C++] - A suite of tools for manipulating BUS files for single cell RNA-Seq pre-processing. bustools can be used to error correct barcodes, collapse UMIs, produce gene count or transcript compatibility count matrices, and is useful for many other tasks.
  • ccRemover - [R] - Removes the Cell-Cycle Effect from Single-Cell RNA-Sequencing Data. Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data.
  • celda - [R] - A suite of Bayesian hierarchical models and supporting functions to perform clustering of cells and genes for count data generated by scRNA-seq. Celda: a Bayesian model to perform co-clustering of genes into modules and cells into subpopulations using single-cell RNA-seq data. The package also includes DecontX.
  • Cell_BLAST - [Python] - A BLAST-like toolkit for scRNA-seq data querying and automated annotation.
  • CellCNN - [Python] - Representation Learning for detection of phenotype-associated cell subsets
  • CellRanger - [Linux Binary] - Cell Ranger is a set of analysis pipelines that process Chromium single-cell RNA-seq output to align reads, generate gene-cell matrices and perform clustering and gene expression analysis. Software requires registration with 10xgenomics.
  • cellTree - [R] - Cell population analysis and visualization from single cell RNA-seq data using a Latent Dirichlet Allocation model.
  • clusterExperiment - [R] - Functions for running and comparing many different clusterings of single-cell sequencing data. Meant to work with SCONE and slingshot.
  • Clustergrammer - [Python, JavaScript] - Interative web-based heatmap for visualizing and analyzing high dimensional biological data, including single-cell RNA-seq. Clustergrammer can be used within a Jupyter notebook as an interative widget that can be shared using GitHub and NBviewer, see example notebook.
  • Clustergrammer2 - [Python, JavaScript] - Interative WebGL web-based heatmap for visualizing and analyzing single-cell high-dimensional and location-based biological data. Clustergrammer can be used within a Jupyter notebook as an interative widget that can be shared using GitHub and NBviewer, see case studies.
  • CountClust - [R] - Functions for fitting Grade-of-Membership models, also known as "Topic models", to RNA-seq counts. These models generalize clustering methods to allow that each cell may belong to more than one cluster/topic.
  • countsimQC - [R] - Compare characteristics of one or more synthetic (e.g., RNA-seq) count matrices to a real count matrix, possibly the one based on which the synthetic data sets were generated.
  • cyclum - [python] - Cyclum is a novel AutoEncoder approach that characterizes circular trajectories in the high-dimensional gene expression space. Applying Cyclum to removing cell-cycle effects leads to substantially improved delineations of cell subpopulations, which is useful for establishing various cell atlases and studying tumor heterogeneity. bioRxiv
  • CytoGuide - [C++,D3] - CyteGuide: Visual Guidance for Hierarchical Single-Cell Analysis
  • DecontX - [R] - DecontX is a Bayesian method to automatically estimate and remove read contamination in individual cells from scRNA-seq experiments even without learning any information from empty cell barcodes (identified by cell calling for droplet-based methods). Decontamination of ambient RNA in single-cell RNA-seq with DecontX. Included in package celda.
  • DESCEND - [R] - DESCEND deconvolves the true gene expression distribution across cells for UMI scRNA-seq counts. It provides estimates of several distribution based statistics (five distribution measurements and the coefficients of covariates (such as batches or cell size)).
  • DeLorean - [R] - Bayesian pseudotime estimation algorithm that uses Gaussian processes to model gene expression profiles and provides a full posterior for the pseudotimes.
  • dittoSeq - [R] - Bioconductor package offering user friendly visualization tools for single-cell and Bulk RNA Sequencing. Color blindness friendly by default; novice coder friendly; highly customizable and powerful enough to build publication-ready figures; universal in that it works directly with Seurat, SingleCellExperiment, and SummarizedExperiment objects and has import capabilities for edgeR DGElists.
  • dropkick - [Python] - Automated cell filtering for single-cell RNA sequencing data.
  • dynamo - [Python] - Inclusive model of expression dynamics with scSLAM-seq and multiomics, vector field reconstruction and potential landscape mapping.
  • embeddr - [R] - Embeddr creates a reduced dimensional representation of the gene space using a high-variance gene correlation graph and laplacian eigenmaps. It then fits a smooth pseudotime trajectory using principal curves.
  • Falco - [AWS cloud] - Falco: A quick and flexible single-cell RNA-seq processing framework on the cloud.
  • FastProject - [Python] - Signature analysis on low-dimensional projections of single-cell expression data.
  • flotilla - [Python] - Reproducible machine learning analysis of gene expression and alternative splicing data
  • GPfates - [Python] - Model transcriptional cell fates as mixtures of Gaussian Processes
  • GSEApy - [Python] - GSEApy: Gene Set Enrichment Analysis in Python. GSEApy is a Python/Rust implementation for GSEA and wrapper for Enrichr. GSEApy can be used for RNA-seq, ChIP-seq, Microarray data. It can be used for convenient GO enrichment and to produce publication quality figures in python.
  • HocusPocus - [R] - Basic PCA-based workflow for analysis and plotting of single cell RNA-seq data.
  • HTSeq - [Python] - A Python library to facilitate programmatic analysis of data from high-throughput sequencing (HTS) experiments. A popular component of HTSeq is htseq-count, a script to quantify gene expression in bulk and single-cell RNA-Seq and similar experiments.
  • IA-SVA - [R] - Iteratively Adjusted Surrogate Variable Analysis (IA-SVA) is a statistical framework to uncover hidden sources of variation even when these sources are correlated with the biological variable of interest. IA-SVA provides a flexible methodology to i) identify a hidden factor for unwanted heterogeneity while adjusting for all known factors; ii) test the significance of the putative hidden factor for explaining the variation in the data; and iii), if significant, use the estimated factor as an additional known factor in the next iteration to uncover further hidden factors.
  • ICGS - [Python] - Iterative Clustering and Guide-gene Selection (Olsson et al. Nature 2016). Identify discrete, transitional and mixed-lineage states from diverse single-cell transcriptomics platforms. Integrated FASTQ pseudoalignment /quantification (Kallisto), differential expression, cell-type prediction and optional cell cycle exclusion analyses. Specialized methods for processing BAM and 10X Genomics spares matrix files. Associated single-cell splicing PSI methods (MultIPath-PSI). Apart of the AltAnalyze toolkit along with accompanying visualization methods (e.g., heatmap, t-SNE, SashimiPlots, network graphs). Easy-to-use graphical user and commandline interfaces.
  • ivis - [Python or R] - Structure-preserving dimensionality reduction in single-cell datasets.
  • kallisto - [C++] - kallisto is a program for quantifying abundances of transcripts or genes from bulk or single-cell RNA-Seq data, or more generally of target sequences using high-throughput sequencing reads. It is based on pseudoalignment for rapidly determining the compatibility of reads with targets, without the need for alignment.
  • kb-python - [Python] - kb-python is a python package for processing single-cell RNA-sequencing. It wraps the kallisto | bustools single-cell RNA-seq command line tools in order to unify multiple processing workflows.
  • knn-smoothing - [python or R or matlab] - The algorithm is based on the observation that across protocols, the technical noise exhibited by UMI-filtered scRNA-Seq data closely follows Poisson statistics. Smoothing is performed by first identifying the nearest neighbors of each cell in a step-wise fashion, based on variance-stabilized and partially smoothed expression profiles, and then aggregating their transcript counts.
  • mfa - [R] - Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers
  • M3Drop - [R] - Michaelis-Menten Modelling of Dropouts for scRNASeq.
  • MetaCell - [R, C++] - Analysis of single cell RNA-seq data by computing partitions of a cell similarity graph into small homogeneous groups of cells called metacells.
  • MIMOSCA - [python] - A repository for the design and analysis of pooled single cell RNA-seq perturbation experiments (Perturb-seq).
  • Monocle - [R] - Differential expression and time-series analysis for single-cell RNA-Seq.
  • Muscat - [R] - muscat (Multi-sample multi-group scRNA-seq analysis tools ) provides various methods for Differential State (DS) analyses in multi-sample, multi-group, multi-(cell-)subpopulation scRNA-seq data.
  • netSmooth - [R] - netSmooth is a network-diffusion based method that uses priors for the covariance structure of gene expression profiles on scRNA-seq experiments in order to smooth expression values. We demonstrate that netSmooth improves clustering results of scRNA-seq experiments from distinct cell populations, time-course experiments, and cancer genomics.
  • NetworkInference - [Julia] - Fast implementation of single-cell network inference algorithms: <a href="https://www.sciencedirect.com/science/article/pii/S2405471217303861">Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures</a>
  • nimfa - [Python] - Nimfa is a Python scripting library which includes a number of published matrix factorization algorithms, initialization methods, quality and performance measures and facilitates the combination of these to produce new strategies. The library represents a unified and efficient interface to matrix factorization algorithms and methods.
  • novoSpaRc - [Python] - Predict locations of single cells in space by solely using single-cell RNA sequencing data.

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多