Awesome-Learning-with-Label-Noise

Awesome-Learning-with-Label-Noise

噪声标签学习研究资源汇总

Awesome-Learning-with-Label-Noise项目汇总了噪声标签学习领域的重要资源。该项目收集2008年以来的相关论文、代码和工具,涵盖多种噪声标签处理方法。这一资源列表为研究人员和开发者提供全面参考,有助于解决噪声标签问题,促进机器学习在不完美数据环境中的应用。

机器学习标签噪声深度学习数据集算法Github开源项目
<div align="center"> <h1>Awesome Learning with Noisy Labels</h1> <a href="https://awesome.re"><img src="https://awesome.re/badge.svg"/></a> </div>
A curated list of resources for Learning with Noisy Labels


Papers & Code

  • 2008-NIPS - Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. [Paper] [Code]

  • 2009-ICML - Supervised learning from multiple experts: whom to trust when everyone lies a bit. [Paper]

  • 2011-NIPS - Bayesian Bias Mitigation for Crowdsourcing. [Paper]

  • 2012-ICML - Learning to Label Aerial Images from Noisy Data. [Paper]

  • 2013-NIPS - Learning with Multiple Labels. [Paper]

  • 2013-NIPS - Learning with Noisy Labels. [Paper] [Code]

  • 2014-ML - Learning from multiple annotators with varying expertise. [Paper]

  • 2014 - A Comprehensive Introduction to Label Noise. [Paper]

  • 2014 - Learning from Noisy Labels with Deep Neural Networks. [Paper]

  • 2015-ICLR_W - Training Convolutional Networks with Noisy Labels. [Paper] [Code]

  • 2015-CVPR - Learning from Massive Noisy Labeled Data for Image Classification. [Paper] [Code]

  • 2015-CVPR - Visual recognition by learning from web data: A weakly supervised domain generalization approach. [Paper] [Code]

  • 2015-CVPR - Training Deep Neural Networks on Noisy Labels with Bootstrapping. [Paper] [Loss-Code-Unofficial-1] [Loss-Code-Unofficial-2] [Code-Keras]

  • 2015-ICCV - Webly supervised learning of convolutional networks. [Paper] [Project Pagee]

  • 2015-TPAMI - Classification with noisy labels by importance reweighting. [Paper] [Code]

  • 2015-NIPS - Learning with Symmetric Label Noise: The Importance of Being Unhinged. [Paper] [Loss-Code-Unofficial]

  • 2015-Arxiv - Making Risk Minimization Tolerant to Label Noise. [Paper]

  • 2015 - Learning Discriminative Reconstructions for Unsupervised Outlier Removal. [Paper] [Code]

  • 2015-TNLS - Rboost: label noise-robust boosting algorithm based on a nonconvex loss function and the numerically stable base learners. [Paper]

  • 2016-AAAI - Robust semi-supervised learning through label aggregation. [Paper]

  • 2016-ICLR - Auxiliary Image Regularization for Deep CNNs with Noisy Labels. [Paper] [Code]

  • 2016-CVPR - Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels. [Paper] [Code]

  • 2016-ICML - Loss factorization, weakly supervised learning and label noise robustness. [Paper]

  • 2016-RL - On the convergence of a family of robust losses for stochastic gradient descent. [Paper]

  • 2016-NC - Noise detection in the Meta-Learning Level. [Paper] [Additional information]

  • 2016-ECCV - The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition. [Paper] [Project Page]

  • 2016-ICASSP - Training deep neural-networks based on unreliable labels. [Paper] [Poster] [Code-Unofficial]

  • 2016-ICDM - Learning deep networks from noisy labels with dropout regularization. [Paper] [Code]

  • 2016-KBS - A robust multi-class AdaBoost algorithm for mislabeled noisy data. [Paper]

  • 2017-AAAI - Robust Loss Functions under Label Noise for Deep Neural Networks. [Paper]

  • 2017-PAKDD - On the Robustness of Decision Tree Learning under Label Noise. [Paper]

  • 2017-ICLR - Training deep neural-networks using a noise adaptation layer. [Paper] [Code]

  • 2017-ICLR - Who Said What: Modeling Individual Labelers Improves Classification. [Paper] [Code]

  • 2017-CVPR - Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach. [Paper] [Code]

  • 2017-CVPR - Learning From Noisy Large-Scale Datasets With Minimal Supervision. [Paper]

  • 2017-CVPR - Lean crowdsourcing: Combining humans and machines in an online system. [Paper] [Code]

  • 2017-CVPR - Attend in groups: a weakly-supervised deep learning framework for learning from web data. [Paper] [Code]

  • 2017-ICML - Robust Probabilistic Modeling with Bayesian Data Reweighting. [Paper] [Code]

  • 2017-ICCV - Learning From Noisy Labels With Distillation. [Paper] [Code]

  • 2017-NIPS - Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks. [Paper]

  • 2017-NIPS - Active bias: Training more accurate neural networks by emphasizing high variance samples. [Paper] [Code]

  • 2017-NIPS - Decoupling" when to update" from" how to update". [Paper] [Code]

  • 2017-IEEE-TIFS - A Light CNN for Deep Face Representation with Noisy Labels. [Paper] [Code-Pytorch] [Code-Keras] [Code-Tensorflow]

  • 2017-TNLS - Improving Crowdsourced Label Quality Using Noise Correction. [Paper]

  • 2017-ML - Learning to Learn from Weak Supervision by Full Supervision. [Paper] [Code]

  • 2017-ML - Avoiding your teacher's mistakes: Training neural networks with controlled weak supervision. [Paper]

  • 2017-Arxiv - Deep Learning is Robust to Massive Label Noise. [Paper]

  • 2017-Arxiv - Fidelity-weighted learning. [Paper]

  • 2017 - Self-Error-Correcting Convolutional Neural Network for Learning with Noisy Labels. [Paper]

  • 2017-Arxiv - Learning with confident examples: Rank pruning for robust classification with noisy labels. [Paper] [Code]

  • 2017-Arxiv - Regularizing neural networks by penalizing confident output distributions. [Paper]

  • 2017 - Learning with Auxiliary Less-Noisy Labels. [Paper]

  • 2018-AAAI - Deep learning from crowds. [Paper]

  • 2018-ICLR - mixup: Beyond Empirical Risk Minimization. [Paper] [Code]

  • 2018-ICLR - Learning From Noisy Singly-labeled Data. [Paper] [Code]

  • 2018-ICLR_W - How Do Neural Networks Overcome Label Noise?. [Paper]

  • 2018-CVPR - CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise. [Paper] [Code]

  • 2018-CVPR - Joint Optimization Framework for Learning with Noisy Labels. [Paper] [Code] [Code-Unofficial-Pytorch]

  • 2018-CVPR - Iterative Learning with Open-set Noisy Labels. [Paper] [Code]

  • 2018-ICML - MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. [Paper] [Code]

  • 2018-ICML - Learning to Reweight Examples for Robust Deep Learning. [Paper] [Code] [Code-Unofficial-PyTorch]

  • 2018-ICML - Dimensionality-Driven Learning with Noisy Labels. [Paper] [Code]

  • 2018-ECCV - CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images. [Paper] [Code]

  • 2018-ECCV - Deep Bilevel Learning. [Paper] [Code]

  • 2018-ECCV - Learning with Biased Complementary Labels. [Paper] [Code]

  • 2018-ISBI - Training a neural network based on unreliable human annotation of medical images. [Paper]

  • 2018-WACV - Iterative Cross Learning on Noisy Labels. [Paper]

  • 2018-WACV - A semi-supervised two-stage approach to learning from noisy labels.

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多