Project Icon

Awesome-Learning-with-Label-Noise

噪声标签学习研究资源汇总

Awesome-Learning-with-Label-Noise项目汇总了噪声标签学习领域的重要资源。该项目收集2008年以来的相关论文、代码和工具,涵盖多种噪声标签处理方法。这一资源列表为研究人员和开发者提供全面参考,有助于解决噪声标签问题,促进机器学习在不完美数据环境中的应用。

Awesome Learning with Noisy Labels

A curated list of resources for Learning with Noisy Labels


Papers & Code

  • 2008-NIPS - Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. [Paper] [Code]

  • 2009-ICML - Supervised learning from multiple experts: whom to trust when everyone lies a bit. [Paper]

  • 2011-NIPS - Bayesian Bias Mitigation for Crowdsourcing. [Paper]

  • 2012-ICML - Learning to Label Aerial Images from Noisy Data. [Paper]

  • 2013-NIPS - Learning with Multiple Labels. [Paper]

  • 2013-NIPS - Learning with Noisy Labels. [Paper] [Code]

  • 2014-ML - Learning from multiple annotators with varying expertise. [Paper]

  • 2014 - A Comprehensive Introduction to Label Noise. [Paper]

  • 2014 - Learning from Noisy Labels with Deep Neural Networks. [Paper]

  • 2015-ICLR_W - Training Convolutional Networks with Noisy Labels. [Paper] [Code]

  • 2015-CVPR - Learning from Massive Noisy Labeled Data for Image Classification. [Paper] [Code]

  • 2015-CVPR - Visual recognition by learning from web data: A weakly supervised domain generalization approach. [Paper] [Code]

  • 2015-CVPR - Training Deep Neural Networks on Noisy Labels with Bootstrapping. [Paper] [Loss-Code-Unofficial-1] [Loss-Code-Unofficial-2] [Code-Keras]

  • 2015-ICCV - Webly supervised learning of convolutional networks. [Paper] [Project Pagee]

  • 2015-TPAMI - Classification with noisy labels by importance reweighting. [Paper] [Code]

  • 2015-NIPS - Learning with Symmetric Label Noise: The Importance of Being Unhinged. [Paper] [Loss-Code-Unofficial]

  • 2015-Arxiv - Making Risk Minimization Tolerant to Label Noise. [Paper]

  • 2015 - Learning Discriminative Reconstructions for Unsupervised Outlier Removal. [Paper] [Code]

  • 2015-TNLS - Rboost: label noise-robust boosting algorithm based on a nonconvex loss function and the numerically stable base learners. [Paper]

  • 2016-AAAI - Robust semi-supervised learning through label aggregation. [Paper]

  • 2016-ICLR - Auxiliary Image Regularization for Deep CNNs with Noisy Labels. [Paper] [Code]

  • 2016-CVPR - Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels. [Paper] [Code]

  • 2016-ICML - Loss factorization, weakly supervised learning and label noise robustness. [Paper]

  • 2016-RL - On the convergence of a family of robust losses for stochastic gradient descent. [Paper]

  • 2016-NC - Noise detection in the Meta-Learning Level. [Paper] [Additional information]

  • 2016-ECCV - The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition. [Paper] [Project Page]

  • 2016-ICASSP - Training deep neural-networks based on unreliable labels. [Paper] [Poster] [Code-Unofficial]

  • 2016-ICDM - Learning deep networks from noisy labels with dropout regularization. [Paper] [Code]

  • 2016-KBS - A robust multi-class AdaBoost algorithm for mislabeled noisy data. [Paper]

  • 2017-AAAI - Robust Loss Functions under Label Noise for Deep Neural Networks. [Paper]

  • 2017-PAKDD - On the Robustness of Decision Tree Learning under Label Noise. [Paper]

  • 2017-ICLR - Training deep neural-networks using a noise adaptation layer. [Paper] [Code]

  • 2017-ICLR - Who Said What: Modeling Individual Labelers Improves Classification. [Paper] [Code]

  • 2017-CVPR - Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach. [Paper] [Code]

  • 2017-CVPR - Learning From Noisy Large-Scale Datasets With Minimal Supervision. [Paper]

  • 2017-CVPR - Lean crowdsourcing: Combining humans and machines in an online system. [Paper] [Code]

  • 2017-CVPR - Attend in groups: a weakly-supervised deep learning framework for learning from web data. [Paper] [Code]

  • 2017-ICML - Robust Probabilistic Modeling with Bayesian Data Reweighting. [Paper] [Code]

  • 2017-ICCV - Learning From Noisy Labels With Distillation. [Paper] [Code]

  • 2017-NIPS - Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks. [Paper]

  • 2017-NIPS - Active bias: Training more accurate neural networks by emphasizing high variance samples. [Paper] [Code]

  • 2017-NIPS - Decoupling" when to update" from" how to update". [Paper] [Code]

  • 2017-IEEE-TIFS - A Light CNN for Deep Face Representation with Noisy Labels. [Paper] [Code-Pytorch] [Code-Keras] [Code-Tensorflow]

  • 2017-TNLS - Improving Crowdsourced Label Quality Using Noise Correction. [Paper]

  • 2017-ML - Learning to Learn from Weak Supervision by Full Supervision. [Paper] [Code]

  • 2017-ML - Avoiding your teacher's mistakes: Training neural networks with controlled weak supervision. [Paper]

  • 2017-Arxiv - Deep Learning is Robust to Massive Label Noise. [Paper]

  • 2017-Arxiv - Fidelity-weighted learning. [Paper]

  • 2017 - Self-Error-Correcting Convolutional Neural Network for Learning with Noisy Labels. [Paper]

  • 2017-Arxiv - Learning with confident examples: Rank pruning for robust classification with noisy labels. [Paper] [Code]

  • 2017-Arxiv - Regularizing neural networks by penalizing confident output distributions. [Paper]

  • 2017 - Learning with Auxiliary Less-Noisy Labels. [Paper]

  • 2018-AAAI - Deep learning from crowds. [Paper]

  • 2018-ICLR - mixup: Beyond Empirical Risk Minimization. [Paper] [Code]

  • 2018-ICLR - Learning From Noisy Singly-labeled Data. [Paper] [Code]

  • 2018-ICLR_W - How Do Neural Networks Overcome Label Noise?. [Paper]

  • 2018-CVPR - CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise. [Paper] [Code]

  • 2018-CVPR - Joint Optimization Framework for Learning with Noisy Labels. [Paper] [Code] [Code-Unofficial-Pytorch]

  • 2018-CVPR - Iterative Learning with Open-set Noisy Labels. [Paper] [Code]

  • 2018-ICML - MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels. [Paper] [Code]

  • 2018-ICML - Learning to Reweight Examples for Robust Deep Learning. [Paper] [Code] [Code-Unofficial-PyTorch]

  • 2018-ICML - Dimensionality-Driven Learning with Noisy Labels. [Paper] [Code]

  • 2018-ECCV - CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images. [Paper] [Code]

  • 2018-ECCV - Deep Bilevel Learning. [Paper] [Code]

  • 2018-ECCV - Learning with Biased Complementary Labels. [Paper] [Code]

  • 2018-ISBI - Training a neural network based on unreliable human annotation of medical images. [Paper]

  • 2018-WACV - Iterative Cross Learning on Noisy Labels. [Paper]

  • 2018-WACV - A semi-supervised two-stage approach to learning from noisy labels.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号