diagram_detr_r50_finetuned

diagram_detr_r50_finetuned

BPMN形状数据集上的精细调优识别模型

该项目在BPMN形状数据集上,精细调优了kacper-cierzniewski/daigram_detr_r50_albumentations模型,取得了有效的评估表现。通过调整学习率、批量大小以及优化器等超参数,并采用线性学习率调度,该模型在多达500个训练周期中持续优化。最终的训练损失达到0.9817,通过Native AMP混合精度训练技术,该模型在BPMN形状识别任务中具有较高的准确性和稳定性。

开源项目bpmn-shapes评估损失daigram_detr_r50_albumentations模型细化调整Huggingface训练损失Github

项目介绍:daigram_detr_r50_finetuned

项目概述

daigram_detr_r50_finetuned 是一个经过微调的模型版本。此模型基于 kacper-cierzniewski/daigram_detr_r50_albumentations,并应用在 bpmn-shapes 数据集上。在评估集中,该模型取得了 0.9817 的损失(Loss)值。

模型说明

该模型使用 DETR(Detection Transformer)架构,适用于图形识别任务。通过在 bpmn-shapes 数据集上的微调,该模型可以更好地识别和处理与业务流程建模和符号相关的图形。

使用目的与限制

虽然还需要更多的信息来更详细地描述模型的使用场景,但此模型主要用于图形识别任务,尤其是在处理复杂的符号或图形表示方面。用户需要注意模型可能在某些特定场景下的局限性,例如未提及的数据集或用例。

训练和评估数据

模型是在 bpmn-shapes 数据集上进行微调的。这是一个专门用于包含业务流程图形的形状数据集,具体的训练和评估数据细节还有待进一步补充。

训练过程

训练超参数

在训练过程中,使用了以下超参数:

  • 学习率 (learning_rate):1e-05
  • 训练批次大小 (train_batch_size):48
  • 评估批次大小 (eval_batch_size):48
  • 随机种子 (seed):42
  • 优化器 (optimizer):Adam (参数:betas=(0.9,0.999),epsilon=1e-08)
  • 学习率调度类型 (lr_scheduler_type):线性 (linear)
  • 训练轮数 (num_epochs):500
  • 混合精度训练 (mixed_precision_training):Native AMP

训练结果

以下是训练过程中记录的损失情况:

训练损失值轮数步数验证损失值
0.945712.5501.0238
0.971725.01001.0411
0.982337.51501.0269
............
0.8836500.020000.9817

经过500次迭代,模型的验证损失不断优化,显示出稳定的学习能力和良好的泛化性能。

框架版本

模型训练过程中使用的框架及其版本如下:

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0

这个项目展示了如何通过微调预训练模型来解决特定领域中的挑战,特别是在复杂图形和符号识别方面。这种技术能够极大地提高模型在特定任务中的性能,有助于更高效地执行基于视觉的自动化任务。

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多