Project Icon

Flowformer

Flowformer 利用保护流网络实现 Transformer 线性化和长序列处理

Flowformer 是一种 Transformer 模型,通过引入保护流网络理论,实现了线性复杂度的注意力机制。它能够处理超过4000多个标记的长序列,在视觉、自然语言处理、时间序列和强化学习等领域表现优异。在长序列建模任务中,Flowformer 的平均准确率达到56.48%,超过了 Performer 和 Reformer 等现有方法。该项目不依赖特定归纳偏置,提供了核心代码实现和多个领域的应用示例,为研究人员和开发者提供了一个通用的基础模型。

Flowformer(ICML 2022)

Flowformer:利用守恒流线性化Transformer

:triangular_flag_on_post:新闻(2024.07)Mobile-Attention,一个为移动设备量身定制的Flowformer版本,已在ICML 2024发表。注意力代码可以在这里找到。只需将标准注意力机制替换为我们的Mobile-Attention,就可以获得一个更快的模型。

Transformer在多个领域取得了令人印象深刻的成功。然而,注意力机制的二次复杂度严重阻碍了Transformer处理大量token和扩展到更大模型的能力。为了追求线性复杂度任务通用的基础模型,我们提出了Flowformer [论文],具有以下优点:

  • 相对于序列长度的线性复杂度,可以处理极长序列(超过4k个token)
  • 无特定归纳偏置,纯粹源自流网络理论
  • 任务通用,在**$\color{red}{\text{长序列、视觉、自然语言处理、时间序列、强化学习}}$**等任务中表现出色。

流注意力设计

我们将注意力机制转化为流网络,信息流通过学习的流容量(注意力)从源(值)聚合到汇(结果)。

通过在源和汇两个方面进行守恒,我们可以将竞争引入流注意力设计,避免琐碎的注意力,体现了"固定资源会导致竞争"的精神。



图1. 具有竞争和分配机制的流注意力。

快速开始

  1. 请参考不同文件夹获取详细的实验说明。

    注意:我们在为不同任务配置环境时遇到了很多困难。如果您在解决环境问题时也遇到困难,欢迎联系我们并讨论。

  2. 基准测试列表

  • 核心代码:见Flow_Attention.py
  • GPT风格的Pytorch模块:见Flowformer_TorchModule
  • LRA中的长序列建模:见Flowformer_LRA
  • ImageNet-1K中的视觉识别:见Flowformer_CV
  • WikiText-103中的语言建模:见Flowformer_NLP
  • UEA中的时间序列分类:见Flowformer_TimeSeries
  • D4RL中的强化学习:见Flowformer_RL
  • CUDA加速版本

主要结果

详细结果请参见[论文],包括近20个对比基准

任务指标FlowformerPerformerReformer普通
Transformer
长序列建模
(LRA)
平均准确率(%)$\uparrow$56.4851.4150.67OOM
视觉识别
(ImageNet-1K)
Top-1准确率(%)$\uparrow$80.678.179.678.7
语言建模
(WikiText-103)
困惑度$\downarrow$30.837.533.633.0
时间序列分类
(UEA)
平均准确率(%)$\uparrow$73.071.571.971.9
离线强化学习
(D4RL)
平均奖励$\uparrow$
平均偏差$\downarrow$
73.5 $\pm$ 2.963.8 $\pm$ 7.663.9 $\pm$ 2.972.2 $\pm$ 2.6

普通Transformer在强化学习中指Decision Transformer。

注意力可视化



图2. 注意力可视化。Flowformer能够成功捕捉到关键部分。

引用

如果您觉得本仓库有用,请引用我们的论文。

@inproceedings{wu2022flowformer,
  title={Flowformer: Linearizing Transformers with Conservation Flows},
  author={Haixu Wu and Jialong Wu and Jiehui Xu and Jianmin Wang and Mingsheng Long},
  booktitle={International Conference on Machine Learning},
  year={2022}
}

联系方式

如果您有任何问题或想使用代码,请联系wuhx23@mails.tsinghua.edu.cn

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号