Project Icon

hmr-survey

单目图像3D人体网格模型重建技术综述

本文综述了单目图像3D人体网格模型重建技术的最新进展。文章详细介绍了基于优化和基于回归两种主要方法,分析其优缺点,并总结相关数据集、评估指标和基准结果。同时讨论了该领域的开放问题和未来方向,为研究人员提供全面的技术概览。

Recovering 3D Human Mesh from Monocular Images: A Survey

Yating Tian · Hongwen Zhang · Yebin Liu · Limin Wang

Paper | Abstract | Datasets | Chronological Overview | Benchmarks

Abstract

Estimating human pose and shape from monocular images is a long-standing problem in computer vision. Since the release of statistical body models, 3D human mesh recovery has been drawing broader attention. With the same goal of obtaining well-aligned and physically plausible mesh results, two paradigms have been developed to overcome challenges in the 2D-to-3D lifting process: i) an optimization-based paradigm, where different data terms and regularization terms are exploited as optimization objectives; and ii) a regression-based paradigm, where deep learning techniques are embraced to solve the problem in an end-to-end fashion. Meanwhile, continuous efforts are devoted to improving the quality of 3D mesh labels for a wide range of datasets. Though remarkable progress has been achieved in the past decade, the task is still challenging due to flexible body motions, diverse appearances, complex environments, and insufficient in-the-wild annotations. To the best of our knowledge, this is the first survey that focuses on the task of monocular 3D human mesh recovery. We start with the introduction of body models and then elaborate recovery frameworks and training objectives by providing in-depth analyses of their strengths and weaknesses. We also summarize datasets, evaluation metrics, and benchmark results. Open issues and future directions are discussed in the end, hoping to motivate researchers and facilitate their research in this area.

This repo will be continuously maintained. Please feel free to create issues if you have any suggestions!

Organization of the Survey
├── Introduction
├── Human Modeling
│   ├── Geometric Primitives
│   └── Statistical Modeling
│       ├── Body Modeling
│       └── Whole Body Modeling
├── Human Mesh Recovery
│   ├── Body Recovery
│   │   ├── Optimization-based Paradigm
│   │   └── Regression-based Paradigm
│   │       ├── Output Type
│   │       ├── Intermediate/Proxy Representation
│   │       ├── Supervision
│   │       └── Network Architecture
│   └── Whole Body Recovery with Hands and Face
│       ├── Individual Reconstruction of Hands and Face
│       │   ├── Hands Reconstruction
│       │   └── Face Reconstruction
│       └── Unified Reconstruction
│           ├── Optimization-based Paradigm
│           └── Regression-based Paradigm
├── Multi-person Recovery
├── Recovery from Monocular Videos
├── Human-Scene Interactions
├── Physical Plausibility
│   ├── Camera Model
│   ├── Contact Constraint
│   ├── Pose Prior and Shape Prior
│   └── Motion Prior
├── Datasets
│   ├── The Acquisition of Mesh Annotations
│   └── Datasets
│       ├── Rendered Datasets
│       ├── Marker/Sensor-based MoCap
│       ├── Marker-less Multi-view MoCap
│       └── Datasets with Pseudo 3D Labels
├── Evaluation
|   ├── Metrics
|   └── Benchmark Leaderboards
└── Conclusion and Future Directions

Datasets

Summary of the Datasets

Overview

Chronological Overview

Benchmarks

Citation

If our survey helps in your research, please consider citing the following paper:

@article{tian2023hmrsurvey,
  title={{Recovering 3D Human Mesh from Monocular Images: A Survey}},
  author={Tian, Yating and Zhang, Hongwen and Liu, Yebin and Wang, Limin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2023},
  publisher={IEEE}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号