Project Icon

Awesome-LLMs-Evaluation-Papers

大型语言模型评估研究论文综述

该项目汇总了大型语言模型(LLMs)评估领域的前沿研究论文,涵盖知识能力、对齐性和安全性评估等方面。还包括特定领域的LLMs评估和综合评估平台介绍。旨在为研究人员提供全面的LLMs评估资源,推动语言模型的可靠发展,平衡社会效益与潜在风险。

Awesome LLMs Evaluation Papers :bookmark_tabs:

The papers are organized according to our survey:

Evaluating Large Language Models: A Comprehensive Survey

Zishan Guo*, Renren Jin*, Chuang Liu*, Yufei Huang, Dan Shi, Supryadi,

Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong, Deyi Xiong†

Tianjin University

(*: Co-first authors, †: Corresponding author)

If you find our survey useful, please kindly cite our paper:

@article{guo2023evaluating,
  title={Evaluating Large Language Models: A Comprehensive Survey},
  author={Guo, Zishan and Jin, Renren and Liu, Chuang and Huang, Yufei and Shi, Dan and Yu, Linhao and Liu, Yan and Li, Jiaxuan and Xiong, Bojian and Xiong, Deyi and others},
  journal={arXiv preprint arXiv:2310.19736},
  year={2023}
}

Contributing to this paper list

Feel free to open an issue/PR or e-mail guozishan@tju.edu.cn, rrjin@tju.edu.cn, liuc_09@tju.edu.cn and dyxiong@tju.edu.cn if you find any missing areas, papers, or datasets. We will keep updating this list and survey.

Updates

  • [2023-10-30] Initial Paperlist for LLMs Evaluation from Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan Shi, Supryadi, Linhao Yu, Jiaxuan Li, Bojian Xiong and Deyi Xiong.

Survey Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs.

This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that covers LLM evaluations on capabilities, alignment, safety, sand applicability.

We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks.

Markups

The paper proposes a dataset that can be used for LLMs evaluation.

The paper proposes an evaluation method that can be used for LLMs.

The paper proposes a platform for LLMs evaluation.

The paper examines the performance of LLMs in a particular domain.

Table of Contents

Related Surveys for LLMs Evaluation

  1. "Through the Lens of Core Competency: Survey on Evaluation of Large Language Models".

    Ziyu Zhuang et al. arXiv 2023. [Paper] [GitHub]

  2. "A Survey on Evaluation of Large Language Models".

    Yupeng Chang and Xu Wang et al. arXiv 2023. [Paper] [GitHub]

Papers

:books:Knowledge and Capability Evaluation

Question Answering

  1. Squad: "Squad: 100, 000+ questions for machine comprehension of text".

    Pranav Rajpurkar et al. EMNLP 2016. [Paper] [Source]

  2. NarrativeQA: "The narrativeqa reading comprehension challenge".

    Tomás Kociský et al. arXiv 2017. [Paper] [Github]

  3. Hotpotqa: "Hotpotqa: A dataset for diverse, explainable multi-hop question answering".

    Zhilin Yang et al. EMNLP 2018. [Paper] [Github]

  4. CoQA: "Coqa: A conversational question answering challenge".

    Siva Reddy et al. NAACL 2019. [Paper] [Github]

  5. NQ: "Natural questions: a benchmark for question answering research".

    Tom Kwiatkowski et al. [Paper] [Github]

  6. DuReader: "Dureader_robust: A chinese dataset towards evaluating robustness and generalization of machine reading comprehension in real-world applications".

    Hongxuan Tang et al. NAACL-HLT 2019. [Paper] [Github]

  7. RAGAS: "RAGAS: Automated Evaluation of Retrieval Augmented Generation".

    Shahul Es et al. arXiv 2023. [Paper] [Github]

  8. "Why Does ChatGPT Fall Short in Providing Truthful Answers?".

    Shen Zheng and Jie Huang et al. arXiv 2023. [Paper]

Knowledge Completion

  1. LAMA: "Language Models as Knowledge Bases?".

    In Kentaro Inui et al. EMNLP-IJCNLP 2019. [Paper] [GitHub]

  2. Kola: "Kola: Carefully Benchmarking World Knowledge of Large Language models".

    JiaFang Yu et al. arXiv 2023. [Paper] [Source]

  3. WikiFact: "Assessing the Factual Accuracy of Generated Text".

    Ben Goodrich et al. KDD 2019. [Paper]

Reasoning

Commonsense Reasoning
  1. ARC: "Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge".

    Peter Clark et al. arXiv 2018. [Paper] [GitHub]

  2. QASC: "QASC: A Dataset for Question Answering via Sentence Composition".

    Tushar Khot et al. AAAI 2020. [Paper] [GitHub]

  3. MCTACO: ""Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding".

    Ben Zhou et al. EMNLP 2019. [Paper] [Source]

  4. TRACIE: "Temporal Reasoning on Implicit Events from Distant Supervision".

    Ben Zhou et al. NAACL 2021. [Paper] [Source]

  5. TIMEDIAL: "TIMEDIAL: Temporal Commonsense Reasoning in Dialog".

    Lianhui Qin et al. ACL 2021. [Paper] [GitHub]

  6. HellaSWAG: "HellaSwag: Can a Machine Really Finish Your Sentence?".

    Rowan Zellers et al. ACL 2019. [Paper] [Source]

  7. PIQA: "PIQA: Reasoning about Physical Commonsense in Natural Language".

    Yonatan Bisk et al. AAAI 2020. [Paper] [Source]

  8. Pep-3k: "Modeling Semantic Plausibility by Injecting World Knowledge".

    Su Wang et al. NAACL-HLT 2018. [Paper] [GitHub]

  9. Social IQA: "Social IQa: Commonsense Reasoning about Social Interactions".

    Maarten Sap and Hannah Rashkin et al. EMNLP 2019. [Paper] [Source]

  10. CommonsenseQA: "CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge".

    Alon Talmor and Jonathan Herzig et al. NAACL 2019. [Paper] [GitHub]

  11. OpenBookQA: "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering".

    Todor Mihaylov et al. EMNLP 2018. [Paper] [Source]

  12. "A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity".

    Yejin Bang et al. arXiv 2023. [Paper] [GitHub]

  13. "ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models".

    Ning Bian et al. arXiv 2023. [Paper]

Logical Reasoning
  1. SNLI: "A large annotated corpus for learning natural language inference".

    Samuel R. Bowman et al. EMNLP 2015. [Paper]

  2. MultiNLI: "A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference".

    Adina Williams et al. NAACL-HLT 2018. [Paper] [GitHub]

  3. LogicNLI: "Diagnosing the First-Order Logical Reasoning Ability Through LogicNLI".

    Jidong Tian and Yitian Li et al. EMNLP 2021.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号