Awesome LLMs Evaluation Papers :bookmark_tabs:
The papers are organized according to our survey:
<p align="center"><strong>Evaluating Large Language Models: A Comprehensive Survey</strong></p> <p align="center">Zishan Guo*, Renren Jin*, Chuang Liu*, Yufei Huang, Dan Shi, Supryadi, </p> <p align="center">Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong, Deyi Xiong†</p> <p align="center">Tianjin University</p> <p align="center">(*: Co-first authors, †: Corresponding author)</p> <div align=center> <img src="./imgs/Figure_1.png" style="zoom:30%"/> </div>If you find our survey useful, please kindly cite our paper:
@article{guo2023evaluating, title={Evaluating Large Language Models: A Comprehensive Survey}, author={Guo, Zishan and Jin, Renren and Liu, Chuang and Huang, Yufei and Shi, Dan and Yu, Linhao and Liu, Yan and Li, Jiaxuan and Xiong, Bojian and Xiong, Deyi and others}, journal={arXiv preprint arXiv:2310.19736}, year={2023} }
Contributing to this paper list
Feel free to open an issue/PR or e-mail guozishan@tju.edu.cn, rrjin@tju.edu.cn, liuc_09@tju.edu.cn and dyxiong@tju.edu.cn if you find any missing areas, papers, or datasets. We will keep updating this list and survey.
Updates
- [2023-10-30] Initial Paperlist for LLMs Evaluation from Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan Shi, Supryadi, Linhao Yu, Jiaxuan Li, Bojian Xiong and Deyi Xiong.
Survey Introduction
Large language models (LLMs) have demonstrated remarkable capabilities across a broad spectrum of tasks. They have attracted significant attention and been deployed in numerous downstream applications. Nevertheless, akin to a double-edged sword, LLMs also present potential risks. They could suffer from private data leaks or yield inappropriate, harmful, or misleading content. Additionally, the rapid progress of LLMs raises concerns about the potential emergence of superintelligent systems without adequate safeguards. To effectively capitalize on LLM capacities as well as ensure their safe and beneficial development, it is critical to conduct a rigorous and comprehensive evaluation of LLMs.
This survey endeavors to offer a panoramic perspective on the evaluation of LLMs. We categorize the evaluation of LLMs into three major groups: knowledge and capability evaluation, alignment evaluation and safety evaluation. In addition to the comprehensive review on the evaluation methodologies and benchmarks on these three aspects, we collate a compendium of evaluations pertaining to LLMs' performance in specialized domains, and discuss the construction of comprehensive evaluation platforms that covers LLM evaluations on capabilities, alignment, safety, sand applicability.
We hope that this comprehensive overview will stimulate further research interests in the evaluation of LLMs, with the ultimate goal of making evaluation serve as a cornerstone in guiding the responsible development of LLMs. We envision that this will channel their evolution into a direction that maximizes societal benefit while minimizing potential risks.
Markups
The paper proposes a dataset that can be used for LLMs evaluation.
The paper proposes an evaluation method that can be used for LLMs.
The paper proposes a platform for LLMs evaluation.
The paper examines the performance of LLMs in a particular domain.
Table of Contents
Related Surveys for LLMs Evaluation
-
"Through the Lens of Core Competency: Survey on Evaluation of Large Language Models".
-
"A Survey on Evaluation of Large Language Models".
Yupeng Chang and Xu Wang et al. arXiv 2023. [Paper] [GitHub]
Papers
:books:Knowledge and Capability Evaluation
Question Answering
-
Squad: "Squad: 100, 000+ questions for machine comprehension of text".
-
NarrativeQA: "The narrativeqa reading comprehension challenge".
-
Hotpotqa: "Hotpotqa: A dataset for diverse, explainable multi-hop question answering".
-
CoQA: "Coqa: A conversational question answering challenge".
-
NQ: "Natural questions: a benchmark for question answering research".
-
DuReader: "Dureader_robust: A chinese dataset towards evaluating robustness and generalization of machine reading comprehension in real-world applications".
-
RAGAS: "RAGAS: Automated Evaluation of Retrieval Augmented Generation".
-
"Why Does ChatGPT Fall Short in Providing Truthful Answers?".
Shen Zheng and Jie Huang et al. arXiv 2023. [Paper]
Knowledge Completion
-
LAMA: "Language Models as Knowledge Bases?".
-
Kola: "Kola: Carefully Benchmarking World Knowledge of Large Language models".
-
WikiFact: "Assessing the Factual Accuracy of Generated Text".
Ben Goodrich et al. KDD 2019. [Paper]
Reasoning
Commonsense Reasoning
-
ARC: "Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge".
-
QASC: "QASC: A Dataset for Question Answering via Sentence Composition".
-
MCTACO: ""Going on a vacation" takes longer than "Going for a walk": A Study of Temporal Commonsense Understanding".
-
TRACIE: "Temporal Reasoning on Implicit Events from Distant Supervision".
-
TIMEDIAL: "TIMEDIAL: Temporal Commonsense Reasoning in Dialog".
-
HellaSWAG: "HellaSwag: Can a Machine Really Finish Your Sentence?".
-
PIQA: "PIQA: Reasoning about Physical Commonsense in Natural Language".
-
Pep-3k: "Modeling Semantic Plausibility by Injecting World Knowledge".
-
Social IQA: "Social IQa: Commonsense Reasoning about Social Interactions".
Maarten Sap and Hannah Rashkin et al. EMNLP 2019. [Paper] [Source]
-
CommonsenseQA: "CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge".
Alon Talmor and Jonathan Herzig et al. NAACL 2019. [Paper] [GitHub]
-
OpenBookQA: "Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering".
-
"A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity".
-
"ChatGPT is a Knowledgeable but Inexperienced Solver: An Investigation of Commonsense Problem in Large Language Models".
Ning Bian et al. arXiv 2023. [Paper]
Logical Reasoning
-
SNLI: "A large annotated corpus for learning natural language inference".
Samuel R. Bowman et al. EMNLP 2015. [Paper]
-
MultiNLI: "A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference".
-
LogicNLI: "Diagnosing the First-Order Logical Reasoning Ability Through LogicNLI".
Jidong Tian and Yitian Li et al. EMNLP 2021.
编辑推荐精选


Manus
全面超越基准的 AI Agent助手
Manus 是一款通用人工智能代理平台,能够将您的创意和想法迅速转化为实际成果。无论是定制旅行规划、深入的数据分析,还是教育支持与商业决策,Manus 都能高效整合信息,提供精准解决方案。它以直观的交互 体验和领先的技术,为用户开启了一个智慧驱动、轻松高效的新时代,让每个灵感都能得到完美落地。


飞书知识问答
飞书官方推出的AI知识库 上传word pdf即可部署AI私有知识库
基于DeepSeek R1大模型构建的知识管理系统,支持PDF、Word、PPT等常见文档格式解析,实现云端与本地数据的双向同步。系统具备实时网络检索能力,可自动关联外部信息源,通过语义理解技术处理结构化与非结构化数据。免费版本提供基础知识库搭建功能,适用于企业文档管理和个人学习资料整理场景。


Trae
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

酷表ChatExcel
大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


DeepEP
DeepSeek开源的专家并行通信优化框架
DeepEP是一个专为大规模分布式计算设计的通信库,重点解决专家并行模式中的通信瓶颈问题。其核心架构采用分层拓扑感知技术,能够自动识别节点间物理连接关系,优化数据传输路径。通过实现动态路由选择与负载均衡机制,系统在千卡级计算集群中维持稳定的低延迟特性,同时兼容主流深度学习框架的通信接口。


DeepSeek
全球领先开源大模型,高效智能助手
DeepSeek是一家幻方量化创办的专注于通用人工智能的中国科技公司,主攻大模型研发与应用。DeepSeek-R1是开源的推理模型,擅长处理复杂任务且可免费商用。


KnowS
AI医学搜索引擎 整合4000万+实时更新的全球医学文献
医学领域专用搜索引擎整合4000万+实时更新的全球医学文献,通过自主研发AI模型实现精准知识检索。系统每日更新指南、中英文文献及会议资料,搜索准确率较传统工具提升80%,同时将大模型幻觉率控制在8%以下。支持临床建议生成、文献深度解析、学术报告制作等全流程科研辅助,典型用户反馈显示每周可节省医疗工作者70%时间。


Windsurf Wave 3
Windsurf Editor推出第三次重大更新Wave 3
新增模型上下文协议支持与智能编辑功能。本次更新包含五项核心改进:支持接入MCP协议扩展工具生态,Tab键智能跳转提升编码效率,Turbo模式实现自动化终端操作,图片拖拽功能优化多模态交互,以及面向付费用户的个性化图标定制。系统同步集成DeepSeek、Gemini等新模型,并通过信用点数机制实现差异化的资源调配。


腾讯元宝
腾讯自研的混元大模型AI助手
腾讯元宝是腾讯基于自研的混元大模型推出的一款多功能AI应用,旨在通过人工智能技术提升用户在写作、绘画、翻译、编程、搜索、阅读总结等多个领域的工作与生活效率。


Grok3
埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型
Grok3 是由埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型,常被马斯克称为“地球上最聪明的 AI”。它不仅是在前代产品 Grok 1 和 Grok 2 基础上的一次飞跃,还在多个关键技术上实现了创新突破。
推荐工具精选
AI云服务特惠
懂AI专属折扣关注微信公众号
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号