Project Icon

pbdl-book

将深度学习与物理模拟融合 革新数值计算方法

Physics-based Deep Learning book探讨了深度学习在物理模拟中的应用,重点关注基于场的模拟。内容涵盖监督学习、物理约束、可微分模拟和强化学习等主题,并提供Jupyter notebook实例。该书致力于结合数据驱动方法和传统数值技术,以提升模拟性能。通过流体动力学和不确定性量化等案例,展示了物理深度学习在计算效率和精度方面的应用前景。书中深入探讨了深度学习与物理知识的结合方式,同时保留了对数值方法的深入理解。实例说明如何利用深度学习解决PDE问题,强调了物理约束在学习过程中的重要性。此外,还介绍了差分物理训练和改进的学习方法,为读者提供了全面的物理深度学习入门指南。

欢迎阅读物理深度学习书籍 (PBDL) v0.2

这是Jupyter书籍"基于物理的深度学习"的源代码仓库。您可以在以下网址找到完整的可读版本: https://physicsbaseddeeplearning.org/

单一PDF版本也可在arXiv上获取:https://arxiv.org/pdf/2109.05237.pdf

PBDL

简短概述

PBDL书籍包含了物理模拟背景下深度学习相关内容的实用全面介绍。尽可能地,所有主题都配有Jupyter笔记本形式的实践代码示例,以便快速入门。除了标准的从数据中进行监督学习外,我们还将探讨物理损失约束、与可微分模拟更紧密耦合的学习算法,以及强化学习和不确定性建模。我们正处于激动人心的时代:这些方法有巨大潜力从根本上改变我们在模拟中能够实现的目标。

我们将在接下来重点讨论的关键方面包括:

  • 解释如何使用深度学习技术解决PDE问题,
  • 如何将它们与现有的物理知识结合,
  • 同时不放弃我们关于数值方法的知识。

本书重点关注:

  • 基于场的模拟(不太涉及拉格朗日方法)
  • 与深度学习的结合(还有许多其他有趣的机器学习技术存在,但本书不会讨论)
  • 实验作为展望(例如用真实世界的观测替代合成数据)

本书名称"基于物理的深度学习"表示物理建模和数值模拟与基于人工神经网络方法的结合。基于物理的深度学习这一总体方向代表了一个非常活跃、快速增长且令人兴奋的研究领域。

本书旨在利用我们掌握的所有强大的数值技术,并尽可能地使用它们。因此,本书的一个核心目标是调和以数据为中心的观点与物理模拟。

由此产生的方法有巨大潜力改进数值方法的应用:在求解器反复针对某个明确定义的问题域中的案例时,投入大量资源一次性训练一个支持重复求解的神经网络可能是非常有意义的。基于这个网络的领域特定专门化,这样的混合方法可能会大大超越传统的通用求解器。

有什么新内容?

预览

这里列举几个亮点:本书包含一个通过可微分物理训练混合流体流动(纳维-斯托克斯)求解器以减少数值误差的笔记本。试试看: https://colab.research.google.com/github/tum-pbs/pbdl-book/blob/main/diffphys-code-sol.ipynb

在v0.2版本中,有一个新的笔记本介绍了改进的学习方案,该方案联合计算神经网络和物理的更新方向(通过半逆梯度): https://colab.research.google.com/github/tum-pbs/pbdl-book/blob/main/physgrad-hig-code.ipynb

它还包含了训练贝叶斯神经网络用于预测翼型周围RANS流动并产生不确定性估计的示例代码。您可以立即在这里运行代码: https://colab.research.google.com/github/tum-pbs/pbdl-book/blob/main/bayesian-code.ipynb

还有一个笔记本用于比较基于近端策略的强化学习与基于物理的学习在控制PDE方面的表现(剧透:基于物理的版本最终表现更好)。试试看: https://colab.research.google.com/github/tum-pbs/pbdl-book/blob/main/reinflearn-code.ipynb

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号