Project Icon

causalml

Python因果推断与提升建模库:causalml

causalml是一个Python库,集成了机器学习算法用于提升建模和因果推断。它提供标准接口,支持从实验或观察数据中估计条件平均处理效应和个体处理效应。该库适用于广告定向优化和个性化推荐等场景,有助于提高营销效果。causalml实现了多种因果推断方法,并配有详细文档和示例,便于开发者学习和应用。


PyPI 版本 构建状态 文档状态 下载量 CII 最佳实践

免责声明

该项目稳定并正在孵化以获得长期支持。它可能包含新的实验性代码,其API可能会发生变化。

Causal ML:用于提升建模和因果推断的Python包

Causal ML是一个Python包,它提供了一套基于最新研究的使用机器学习算法进行提升建模和因果推断的方法[1]。它提供了一个标准接口,允许用户从实验数据或观察数据中估计条件平均处理效应(CATE)或个体处理效应(ITE)。本质上,它估计干预T对具有观察特征X的用户的结果Y的因果影响,而不对模型形式做出强假设。典型的使用场景包括

  • 营销活动目标优化:提高广告活动投资回报率的一个重要杠杆是将广告定向投放给在特定KPI(如参与度或销售额)方面会有积极响应的客户群。CATE通过从A/B实验或历史观察数据中估计个体层面的广告曝光对KPI的影响来识别这些客户。

  • 个性化互动:公司有多种与客户互动的选择,如追加销售的不同产品选择或沟通的消息渠道。可以使用CATE来估计每个客户和处理选项组合的异质处理效应,从而建立最佳的个性化推荐系统。

文档

文档可在以下地址获取:

https://causalml.readthedocs.io/en/latest/about.html

安装

安装说明可在以下地址获取:

https://causalml.readthedocs.io/en/latest/installation.html

快速入门

包含代码片段的快速入门指南可在以下地址获取:

https://causalml.readthedocs.io/en/latest/quickstart.html

示例笔记本

示例笔记本可在以下地址获取:

https://causalml.readthedocs.io/en/latest/examples.html

贡献

我们欢迎社区贡献者参与项目。在开始之前,请阅读我们的行为准则并查看贡献指南

版本控制

我们在更新日志中记录版本和变更。

许可证

本项目采用Apache 2.0许可证 - 详情请参阅LICENSE文件。

参考文献

文档

CausalML团队的会议演讲和出版物

引用

要在出版物中引用CausalML,您可以参考以下来源:

白皮书: CausalML: Python Package for Causal Machine Learning

Bibtex:

@misc{chen2020causalml, title={CausalML: Python Package for Causal Machine Learning}, author={Huigang Chen and Totte Harinen and Jeong-Yoon Lee and Mike Yung and Zhenyu Zhao}, year={2020}, eprint={2002.11631}, archivePrefix={arXiv}, primaryClass={cs.CY} }

文献

  1. Chen, Huigang, Totte Harinen, Jeong-Yoon Lee, Mike Yung, and Zhenyu Zhao. "Causalml: Python package for causal machine learning." arXiv preprint arXiv:2002.11631 (2020).
  2. Radcliffe, Nicholas J., and Patrick D. Surry. "Real-world uplift modelling with significance-based uplift trees." White Paper TR-2011-1, Stochastic Solutions (2011): 1-33.
  3. Zhao, Yan, Xiao Fang, and David Simchi-Levi. "Uplift modeling with multiple treatments and general response types." Proceedings of the 2017 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2017.
  4. Hansotia, Behram, and Brad Rukstales. "Incremental value modeling." Journal of Interactive Marketing 16.3 (2002): 35-46.
  5. Jannik Rößler, Richard Guse, and Detlef Schoder. "The Best of Two Worlds: Using Recent Advances from Uplift Modeling and Heterogeneous Treatment Effects to Optimize Targeting Policies". International Conference on Information Systems (2022)
  6. Su, Xiaogang, et al. "Subgroup analysis via recursive partitioning." Journal of Machine Learning Research 10.2 (2009).
  7. Su, Xiaogang, et al. "Facilitating score and causal inference trees for large observational studies." Journal of Machine Learning Research 13 (2012): 2955.
  8. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.
  9. Künzel, Sören R., et al. "Metalearners for estimating heterogeneous treatment effects using machine learning." Proceedings of the national academy of sciences 116.10 (2019): 4156-4165.
  10. Nie, Xinkun, and Stefan Wager. "Quasi-oracle estimation of heterogeneous treatment effects." arXiv preprint arXiv:1712.04912 (2017).
  11. Bang, Heejung, and James M. Robins. "Doubly robust estimation in missing data and causal inference models." Biometrics 61.4 (2005): 962-973.
  12. Van Der Laan, Mark J., and Daniel Rubin. "Targeted maximum likelihood learning." The international journal of biostatistics 2.1 (2006).
  13. Kennedy, Edward H. "Optimal doubly robust estimation of heterogeneous causal effects." arXiv preprint arXiv:2004.14497 (2020).
  14. Louizos, Christos, et al. "Causal effect inference with deep latent-variable models." arXiv preprint arXiv:1705.08821 (2017).
  15. Shi, Claudia, David M. Blei, and Victor Veitch. "Adapting neural networks for the estimation of treatment effects." 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), 2019.
  16. Zhao, Zhenyu, Yumin Zhang, Totte Harinen, and Mike Yung. "Feature Selection Methods for Uplift Modeling." arXiv preprint arXiv:2005.03447 (2020).
  17. Zhao, Zhenyu, and Totte Harinen. "Uplift modeling for multiple treatments with cost optimization." In 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 422-431. IEEE, 2019.

相关项目

  • uplift:R中的提升模型
  • grf:R中包括异质处理效应估计的广义随机森林
  • rlearner:实现R-Learner的R包
  • DoWhy:基于Judea Pearl的do-calculus的Python因果推断
  • EconML:实现来自计量经济学和机器学习方法的异质处理效应估计器的Python包
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号