AGI-survey

AGI-survey

人工通用智能研究前沿及未来发展路线图概览

AGI-survey项目系统梳理了人工通用智能(AGI)研究的前沿进展。项目覆盖AGI内部机制、接口设计、系统实现、对齐问题及发展路线等核心领域,汇总分析了大量相关论文。内容涉及AGI的感知、推理、记忆能力,及其与数字世界、物理世界和其他智能体的交互。此外,项目还探讨了AGI的评估方法和伦理考量,为AGI的发展提供全面参考。

AGI人工智能大语言模型多模态推理Github开源项目

Awesome AGI Survey<br><sub>Must-read papers on Artificial General Intelligence</sub>

Arxiv Paper Workshop Link License: MIT

<p align="center"> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/abstract.png" alt="Abstract Image"> </p>

🔔 News

🔥 Our project is an ongoing, open initiative that will evolve in parallel with advancements in AGI. We plan to add more work soon, and we highly welcome pull requests!

BibTex citation if you find our work/resources useful:

@article{feng2024far, title={How Far Are We From AGI}, author={Feng, Tao and Jin, Chuanyang and Liu, Jingyu and Zhu, Kunlun and Tu, Haoqin and Cheng, Zirui and Lin, Guanyu and You, Jiaxuan}, journal={arXiv preprint arXiv:2405.10313}, year={2024} }

📜Content

<p align="center"> <figure> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/intro.jpg" alt="intro"> </figure> </p>

-> The framework design of our paper. <-

1. Introduction

<p align="center"> <figure> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/f2-1.png" width="600"> </figure> </p>

-> Proportion of Human Activities Surpassed by AI. <-

2. AGI Internal: Unveiling the Mind of AGI

<p align="center"> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/2a-1.png" width="600"> </p> <p align="center"> <img src="https://github.com/JiaxuanYou/LLM-AGI/blob/main/assets/fig/2b-1.png" width="600"> </p>

2.1 AI Perception

  1. Flamingo: a Visual Language Model for Few-Shot Learning. Jean-Baptiste Alayrac et al. NeurIPS 2022. [paper]
  2. BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models. Junnan Li et al. ICML 2023. [paper]
  3. SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for Multi-modal Large Language Models. Ziyi Lin et al. EMNLP 2023. [paper]
  4. Visual Instruction Tuning. Haotian Liu et al. NeurIPS 2023. [paper]
  5. GPT4Tools: Teaching Large Language Model to Use Tools via Self-instruction. Rui Yang et al. NeurIPS 2023. [paper]
  6. Otter: A Multi-Modal Model with In-Context Instruction Tuning. Bo Li et al. arXiv 2023. [paper]
  7. VideoChat: Chat-Centric Video Understanding. KunChang Li et al. arXiv 2023. [paper]
  8. mPLUG-Owl: Modularization Empowers Large Language Models with Multimodality. Qinghao Ye et al. arXiv 2023. [paper]
  9. A Survey on Multimodal Large Language Models. Shukang Yin et al. arXiv 2023. [paper]
  10. PandaGPT: One Model To Instruction-Follow Them All. Yixuan Su et al. arXiv 2023. [paper]
  11. LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention. Renrui Zhang et al. arXiv 2023. [paper]
  12. Gemini: A Family of Highly Capable Multimodal Models. Rohan Anil et al. arXiv 2023. [paper]
  13. Shikra: Unleashing Multimodal LLM's Referential Dialogue Magic. Keqin Chen et al. arXiv 2023. [paper]
  14. ImageBind: One Embedding Space To Bind Them All. Rohit Girdhar et al. CVPR 2023. [paper]
  15. MobileVLM : A Fast, Strong and Open Vision Language Assistant for Mobile Devices. Xiangxiang Chu et al. arXiv 2023. [paper]
  16. What Makes for Good Visual Tokenizers for Large Language Models?. Guangzhi Wang et al. arXiv 2023. [paper]
  17. MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models. Deyao Zhu et al. ICLR 2024. [paper]
  18. LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment. Bin Zhu et al. ICLR 2024. [paper]

2.2 AI Reasoning

  1. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. Jason Wei et al. NeurIPS 2022. [paper]
  2. Neural Theory-of-Mind? On the Limits of Social Intelligence in Large LMs. Maarten Sap et al. EMNLP 2022. [paper]
  3. Inner Monologue: Embodied Reasoning through Planning with Language Models. Wenlong Huang et al. CoRL 2022. [paper]
  4. Survey of Hallucination in Natural Language Generation. Ziwei Ji et al. ACM Computing Surveys 2022. [paper]
  5. ReAct: Synergizing Reasoning and Acting in Language Models. Shunyu Yao et al. ICLR 2023. [paper]
  6. Decomposed Prompting: A Modular Approach for Solving Complex Tasks. Tushar Khot et al. ICLR 2023. [paper]
  7. Complexity-Based Prompting for Multi-Step Reasoning. Yao Fu et al. ICLR 2023. [paper]
  8. Least-to-Most Prompting Enables Complex Reasoning in Large Language Models. Denny Zhou et al. ICLR 2023. [paper]
  9. Towards Reasoning in Large Language Models: A Survey. Jie Huang et al. ACL Findings 2023. [paper]
  10. ProgPrompt: Generating Situated Robot Task Plans using Large Language Models. Ishika Singh et al. ICRA 2023. [paper]
  11. Reasoning with Language Model is Planning with World Model. Shibo Hao et al. EMNLP 2023. [paper]
  12. Evaluating Object Hallucination in Large Vision-Language Models. Yifan Li et al. EMNLP 2023. [paper]
  13. Tree of Thoughts: Deliberate Problem Solving with Large Language Models. Shunyu Yao et al. NeurIPS 2023. [paper]
  14. Self-Refine: Iterative Refinement with Self-Feedback. Aman Madaan et al. NeurIPS 2023. [paper]
  15. Reflexion: Language Agents with Verbal Reinforcement Learning. Noah Shinn et al. NeurIPS 2023. [paper]
  16. Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents. Zihao Wang et al. NeurIPS 2023. [paper]
  17. LLM+P: Empowering Large Language Models with Optimal Planning Proficiency. Bo Liu et al. arXiv 2023. [paper]
  18. Language Models, Agent Models, and World Models: The LAW for Machine Reasoning and Planning. Zhiting Hu et al. arXiv 2023. [paper]
  19. MMToM-QA: Multimodal Theory of Mind Question Answering. Chuanyang Jin et al. arXiv 2024. [paper]
  20. Graph of Thoughts: Solving Elaborate Problems with Large Language Models. Maciej Besta et al. AAAI 2024. [paper]
  21. Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Perfect Reasoners. Qihuang Zhong et al. arXiv 2024. [paper] pending

2.3 AI Memory

  1. Dense Passage Retrieval for Open-Domain Question Answering. Vladimir Karpukhin et al. EMNLP 2020. [paper]
  2. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. Patrick Lewis et al. NeurIPS 2020. [paper]
  3. REALM: Retrieval-Augmented Language Model Pre-Training. Kelvin Guu et al. ICML 2020. [paper]
  4. Retrieval Augmentation Reduces Hallucination in Conversation. Kurt Shuster et al. EMNLP Findings 2021. [paper]
  5. Improving Language Models by Retrieving from Trillions of Tokens. Sebastian Borgeaud et al. ICML 2022. [paper]
  6. Generative Agents: Interactive Simulacra of Human Behavior. Joon Sung Park et al. UIST 2023. [paper]
  7. Cognitive Architectures for Language Agents. Theodore R. Sumers et al. TMLR 2024. [paper]
  8. Voyager: An Open-Ended Embodied Agent with Large Language Models. Guanzhi Wang et al. arXiv 2023. [paper]
  9. **A Survey on the Memory Mechanism of Large Language Model based

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多