Project Icon

build-your-ai-coding-assistant

构建AI编码助手全流程指南 助力开发效率提升

该项目提供构建AI辅助编码助手的全面指南,包括IDE插件开发、模型评估微调和数据工程等核心内容。通过整合开源工具和技术,项目旨在帮助开发者创建高效AI编码助手。内容涵盖多种AI辅助场景实现方法,探讨上下文工程对AI性能的影响,为开发者提供实用经验。

AI 研发提效:构建 AI 辅助编码助手

Cover

2023 年,生成式 AI 的火爆,让越来越多的组织开始引入 AI 辅助编码。与在 2021 年发布的 GitHub Copilot 稍有差异的是,代码补全只是众多场景中的一个。 大量的企业内部在探索结合需求生成完整代码、代码审查等场景,也引入生成式 AI,来提升开发效率。

在这个背景下,我们(Thoughtworks 开源社区)也开源了一系列的 AI 辅助工具,以帮助更多的组织构建自己的 AI 辅助编码助手:

  • AutoDev for Intellij,基于 JetBrains 平台的全流程 AI 辅助编码工具。
  • AutoDev for VSCode,基于 VSCode 编辑器的全流程 AI 辅助编码工具。
  • Unit Eval,代码补全场景下的高质量数据集构建与生成工具。
  • Unit Minions,在需求生成、测试生成等测试场景下,基于数据蒸馏的数据集构建工具。

由于,我们设计 AutoDev 时,各类开源模型也在不断演进。在这个背景下,它的步骤是:

  • 构建 IDE 插件与度量体系设计。基于公开模型 API,编写和丰富 IDE 插件功能。
  • 模型评估体系与微调试验。
  • 围绕意图的数据工程与模型演进。

也因此,这个教程也是围绕于这三个步骤展开的。 除此,基于我们的经验,本教程的示例技术栈:

  • 插件:Intellij IDEA。AutoDev 是基于 Intellij IDEA 构建的,并且自带静态代码分析能力,所以基于它作为示例。我们也提供了 VSCode 插件版本:AutoDev for VSCode,你可以在这个基础上进行开发。
  • 模型:DeepSeek Coder 6.7b。基于 Llama 2 架构,与 Llama 生态兼容
  • 微调:Deepspeed + 官方脚本 + Unit Eval。
  • GPU:RTX 4090x2 + OpenBayes。(PS: 用我的专用邀请链接,注册 OpenBayes,双方各获得 60 分钟 RTX 4090 使用时长,支持累积,永久有效: https://openbayes.com/console/signup?r=phodal_uVxU

由于,我们在 AI 方面的经验相对比较有限,难免会有一些错误,所以,我们也希望能够与更多的开发者一起,来构建这个开源项目。

功能设计:定义你的 AI 助手

结合 JetBrains 2023《开发者生态系统》报告的人工智能部分 ,我们可以总结出一些通用的场景,这些场景反映了在开发过程中生成式 AI 可以发挥作用的领域。以下是一些主要的场景:

  • 代码自动补全: 在日常编码中,生成式 AI 可以通过分析上下文和学习代码模式,提供智能的代码自动补全建议,从而提高开发效率。
  • 解释代码: 生成式 AI 能够解释代码,帮助开发者理解特定代码片段的功能和实现方式,提供更深层次的代码理解支持。
  • 生成代码: 通过学习大量的代码库和模式,生成式 AI 可以生成符合需求的代码片段,加速开发过程,尤其在重复性工作中发挥重要作用。
  • 代码审查: 生成式 AI 能够进行代码审查,提供高质量的建议和反馈,帮助开发者改进代码质量、遵循最佳实践。
  • 自然语言查询: 开发者可以使用自然语言查询与生成式 AI 进行交互,提出问题或请求,以获取相关代码片段、文档或解释,使得开发者更轻松地获取需要的信息。
  • 其它。诸如于重构、提交信息生成、建模、提交总结等。

而在我们构建 AutoDev 时,也发现了诸如于创建 SQL DDL、生成需求、TDD 等场景。所以。我们提供了自定义场景的能力,以让开发者可以自定义自己的 AI 能力,详细见:https://ide.unitmesh.cc/customize

场景驱动架构设计:平衡模型速度与能力

在日常编码时,会存在几类不同场景,对于 AI 响应速度的要求也是不同的(仅作为示例):

场景响应速度生成质量要求大小预期说明
代码补全1~6B代码补全是日常编码中最常用的场景,响应速度至关重要。
文档生成16B文档生成需要充分理解代码结构,速度和质量同样重要。
代码审查16B代码审查需要高质量的建议,同时响应速度也需尽可能快。
单元测试生成6B~单元测试生成的上下文较少,响应速度和AI质量同样重要。
代码重构32B~代码重构可能需要更多上下文理解,响应速度可适度减缓。
需求生成32B~需求生成是相对复杂的场景,响应速度可以适度放缓,确保准确性。
自然语言代码搜索与解释中-低32B~自然语言代码搜索与解释是相对复杂的场景,响应速度可以适度放缓,确保准确性。

PS:这里的 32B 仅作为一个量级表示,因为在更大的模型下,效果会更好。

因此,我们将其总结为:一大一中一微三模型,提供全面 AI 辅助编码:

  • 高质量大模型:32B~。用于代码重构、需求生成、自然语言代码搜索与解释等场景。
  • 高响应速度中模型:6B~。用于代码补全、单元测试生成、文档生成、代码审查等场景。
  • 向量化微模型:~100M。用于在 IDE 中进行向量化,诸如:代码相似度、代码相关度等。

重点场景介绍:补全模式

AI 代码补全能结合 IDE 工具分析代码上下文和程序语言的规则,由 AI 自动生成或建议代码片段。在类似于 GitHub Copilot 的代码补全工具中, 通常会分为三种细分模式:

行内补全(Inline)

类似于 FIM(fill in the middle)的模式,补全的内容在当前行中。诸如于:BlotPost blogpost = new,补全为: BlogPost();, 以实现:BlogPost blogpost = new BlogPost();

我们可以 Deepseek Coder 作为例子,看在这个场景下的效果:

<|fim▁begin|>def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
<|fim▁hole|>
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>

在这里,我们就需要结合光标前和光标后的代码。

块内补全(InBlock)

通过上下文学习(In-Context Learning)来实现,补全的内容在当前函数块中。诸如于,原始的代码是:

fun createBlog(blogDto: CreateBlogDto): BlogPost {

}

补全的代码为:

    val blogPost = BlogPost(
    title = blogDto.title,
    content = blogDto.content,
    author = blogDto.author
)
return blogRepository.save(blogPost)

块间补全(AfterBlock)

通过上下文学习(In-Context Learning)来实现,在当前函数块之后补全,如:在当前函数块之后补全一个新的函数。诸如于,原始的代码是:

fun createBlog(blogDto: CreateBlogDto): BlogPost {
    //...
}

补全的代码为:

fun updateBlog(id: Long, blogDto: CreateBlogDto): BlogPost {
    //...
}

fun deleteBlog(id: Long) {
    //...
}

在我们构建对应的 AI 补全功能时,也需要考虑应用到对应的模式数据集,以提升补全的质量,提供更好的用户体验。

编写本文里的一些相关资源:

重点场景介绍:代码解释

代码解释旨在帮助开发者更有效地管理和理解大型代码库。这些助手能够回答关于代码库的问题、 提供文档、搜索代码、识别错误源头、减少代码重复等, 从而提高开发效率、降低错误率,并减轻开发者的工作负担。

在这个场景下,取决于我们预期的生成质量,通常会由一大一微或一中一微两个模型组成,更大的模型在生成的质量上结果更好。结合,我们在 Chocolate Factory 工具中的设计经验,通常这样的功能可以分为几步:

  • 理解用户意图:借助大模型理解用户意图,将其转换为对应的 AI Agent 能力调用或者 function calling 。
  • 转换意图搜索:借助模型将用户意图转换为对应的代码片段、文档或解释,结合传统搜索、路径搜索和向量化搜索等技术,进行搜索及排序。
  • 输出结果:交由大模型对最后的结果进行总结,输出给用户。

作为一个 RAG 应用,其分为 indexing 和 query 两个部分。

在 indexing 阶段,我们需要将代码库进行索引,并涉及到文本分割、向量化、数据库索引等技术。 其中最有挑战的一个内容是拆分,我们参考的折分规则是:https://docs.sweep.dev/blogs/chunking-2m-files 。即:

  • 代码的平均 Token 到字符比例约为1:5(300 个 Token),而嵌入模型的 Token 上限为 512 个。
  • 1500 个字符大约对应于 40 行,大致相当于一个小到中等大小的函数或类。
  • 挑战在于尽可能接近 1500 个字符,同时确保分块在语义上相似且相关上下文连接在一起。

在不同的场景下,我们也可以通过不同的方式进行折分,如在 Chocolate Factory 是通过 AST 进行折分,以保证生成上下文的质量。

在 querying 阶段,需要结合我们一些传统的搜索技术,如:向量化搜索、路径搜索等,以保证搜索的质量。同时,在中文场景下,我们也需要考虑到转换为中文 的问题,如:将英文转换为中文,以保证搜索的质量。

其它:日常辅助

对于日常辅助来说,我们也可以通过生成式 AI 来实现,如:自动创建 SQL DDL、自动创建测试用例、自动创建需求等。这些只需要通过自定义提示词, 结合特定的领域知识,便可以实现,这里不再赘述。

架构设计:上下文工程

除了模型之外,上下文也是影响 AI 辅助能力的重要因素。在我们构建 AutoDev 时,我们也发现了两种不同的上下文模式:

  • 相关上下文:基于静态代码分析的上下文生成,可以构建更好质量的上下文,以生成更高质量的代码和测试等,依赖于 IDE 的静态代码分析能力。
  • 相似上下文:基于相似式搜索的上下文,可以构建更多的上下文,以生成更多的代码和测试等,与平台能力无关。

简单对比如下:

相关上下文相似上下文
检索技术静态代码分析相似式搜索
数据结构信息AST、CFGSimilar Chunk
跨平台能力依赖于 IDE,或者独立的解析器不依赖具体平台
上下文质量极高
生成结果极高
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号