Project Icon

Awesome-Implicit-Neural-Representations-in-Medical-imaging

隐式神经表示在医学影像中的应用研究综述

该项目汇集了86篇关于隐式神经表示在医学影像领域应用的研究论文,时间跨度从2021年至2023年。涵盖图像重建、分割、配准和神经渲染等多个方向。项目提供论文列表、代码链接及相关资源,便于研究者快速获取信息。同时收录了一篇发表于arXiv的综述文章,对医学影像中隐式神经表示的应用进行了全面对比分析。

Implicit Neural Representation in Medical Imaging: A Comparative Survey
ICCV 2023 CVAMD Workshop

Awesome License: MIT PRs Welcome

:fire::fire: This is a collection of awesome articles about Implicit Neural Representation networks in medical imaging:fire::fire:

:loudspeaker: Our review paper published on arXiv: Implicit Neural Representation in Medical Imaging: A Comparative Survey :heart:

Citation

@inproceedings{molaei2023implicit,
  title={Implicit neural representation in medical imaging: A comparative survey},
  author={Molaei, Amirali and Aminimehr, Amirhossein and Tavakoli, Armin and Kazerouni, Amirhossein and Azad, Bobby and Azad, Reza and Merhof, Dorit},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2381--2391},
  year={2023}
}

Introduction

Implicitly representing image signals has gained popularity in recent years for a broad range of medical imaging applications. The most motivating reasons are the following:

  • Memory efficiency: The amount of memory demanded to represent the signal is not restricted by the signal's resolution.
  • Unlimited Resolution: They take values in the continuous domain, meaning they can generate values for coordinates in-between the pixel or voxel-wise grid
  • Effective data usage: They can learn to handle reconstruction and synthesis tasks without high-cost external annotation.

Which all are significantly important for developing an automatic medical system.
With the aim of providing easier access for researchers, this repo contains a comprehensive paper list of Implicit Neural Representations in Medical Imaging, including papers, codes, and related websites.
We considered a sum of 86 research papers spanning from 2021 to 2023.


papers

Taxonomy Here, we taxonomize studies that integrate implicit representations into building medical analysis models.

(Each section is ordered by the publication dates) reconstruction

Image Reconstruction


Tomography and CT

  1. 📜 IntraTomo: Self-supervised Learning-based Tomography via Sinogram Synthesis and Prediction

    • 🗓️ Publication Date: 9th Feb. 2021
    • 📖 Proceedings: IEEE/CVF International Conference on Computer Vision, 2021
    • 🧑‍🔬 Authors: Guangming Zang, Ramzi Idoughi, Rui Li, Peter Wonka, Wolfgang Heidrich
    • 📄 PDF
    • 📌 Highlight: Uses coordinate-based neural representations for CT reconstructions, capturing details often overlooked by standard deep learning. It's self-supervised, using the scanned object's own projections as training data, and further refined with geometric techniques.
  2. 📜 CoIL: Coordinate-based Internal Learning for Imaging Inverse Problems

    • 🗓️ Publication Date: 9th Feb. 2021
    • 📖 Journal: IEEE Transactions on Computational Imaging, 2021
    • 🧑‍🔬 Authors: Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg, Ulugbek S. Kamilov
    • 📄 PDF
    • 💻 GitHub
    • 📌 Highlight: Takes measurement coordinates, such as view angle θ and spatial location l in CT scans, as its input, then outputs the corresponding sensor responses for these coordinates, creating an implicit neural representation of the measurement field.
  3. 📜 Dynamic CT Reconstruction from Limited Views with Implicit Neural Representations and Parametric Motion Fields

    • 🗓️ Publication Date: 23th Apr. 2021
    • 📖 Proceedings: IEEE/CVF International Conference on Computer Vision, 2021
    • 🧑‍🔬 Authors: Albert W. Reed, Hyojin Kim, Rushil Anirudh, K. Aditya Mohan, Kyle Champley, Jingu Kang, Suren Jayasuriya
    • 📄 PDF
    • 📌 Highlight: Uses implicit neural representations (INRs) for 4D-CT reconstruction. Paired with a parametric motion field, they estimate evolving 3D objects. Using a differentiable Radon transform, reconstructions are synthesized and compared with x-ray data, improving reconstruciton quality without training data.
  4. 📜 Neural Computed Tomography

    • 🗓️ Publication Date: 17th Jan. 2022
    • 📖 Preprint: arXiv, 2022
    • 🧑‍🔬 Authors: Kunal Gupta, Brendan Colvert, Francisco Contijoch
    • 📄 PDF
    • 💻 GitHub
  5. 📜 Streak artifacts reduction algorithm using an implicit neural representation in sparse-view CT

    • 🗓️ Publication Date: 4th Apr. 2022
    • 📖 Conference: Medical Imaging 2022: Physics of Medical Imaging, 2022
    • 🧑‍🔬 Authors: Byeongjoon Kim, Hyunjung Shim, Jongduk Baek
    • 📄 PDF
  6. 📜 Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography

    • 🗓️ Publication Date: 12th Sep. 2022
    • 📖 Journal: IEEE Transactions on Computational Imaging, 2023
    • 🧑‍🔬 Authors: Qing Wu, Ruimin Feng, Hongjiang Wei, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
    • 💻 GitHub
  7. 📜 OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields

    • 🗓️ Publication Date: 23th Nov. 2022
    • 📖 Conference: CVPR, 2023
    • 🧑‍🔬 Authors: Haim Sawdayee, Amir Vaxman, Amit H. Bermano
    • 📄 PDF
    • 💻 GitHub
  8. 📜 NeuRec: Incorporating Interpatient prior to Sparse-View Image Reconstruction for Neurorehabilitation

    • 🗓️ Publication Date: 21th Feb. 2022
    • 📖 Journal: BioMed Research International, 2022
    • 🧑‍🔬 Authors: Cong Liu, Qingbin Wang, Jing Zhang
    • 📄 PDF
  9. 📜 MEPNet: A Model-Driven Equivariant Proximal Network for Joint Sparse-View Reconstruction and Metal Artifact Reduction in CT Images.

    • 🗓️ Publication Date: 25th Jun. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Hong Wang, Minghao Zhou, Dong Wei, Yuexiang Li, Yefeng Zheng
    • 📄 PDF
    • 🖥️ GitHub
  10. 📜 UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography

    • 🗓️ Publication Date: 3rd Jun. 2022
    • 📖 Authors: Francisca Vasconcelos, Bobby He, Nalini Singh, Yee Whye Teh
    • 📄 PDF
    • 💻 GitHub
  11. 📜 Unsupervised Polychromatic Neural Representation for CT Metal Artifact Reduction

    • 🗓️ Publication Date: 27th Jun. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Qing Wu, Lixuan Chen, Ce Wang, Hongjiang Wei, S. Kevin Zhou, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
  12. 📜 NAISR: A 3D Neural Additive Model for Interpretable Shape Representation

    • 🗓️ Publication Date: 16th Mar. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Yining Jiao, Carlton Zdanski, Julia Kimbell, Andrew Prince, Cameron Worden, Samuel Kirse, Christopher Rutter, Benjamin Shields, William Dunn
    • 📄 PDF
    • 💻 GitHub

Return to List


MRI

  1. 📜 An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation

    • 🗓️ Publication Date: 29th Oct. 2021
    • 🧑‍🔬 Authors: Qing Wu, Yuwei Li, Yawen Sun, Yan Zhou, Hongjiang Wei, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
    • 💻 GitHub
  2. 📜 IREM: High-Resolution Magnetic Resonance (MR) Image Reconstruction via Implicit Neural Representation

    • 🗓️ Publication Date: 29th Jun. 2021
    • 🧑‍🔬 Authors: Qing Wu, Yuwei Li, Lan Xu, Ruiming Feng, Hongjiang Wei, Qing Yang, Boliang Yu, Xiaozhao Liu, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
  3. 📜 MRI Super-Resolution using Implicit Neural Representation with Frequency Domain Enhancement

    • 🗓️ Publication Date: Aug. 2022
    • 🧑‍🔬 Authors: Shuangming Mao, Seiichiro Kamata
    • 📄 PDF
  4. 📜 NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI

    • 🗓️ Publication Date: IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022
    • 🧑‍🔬 Authors: Junshen Xu, Daniel Moyer, Borjan Gagoski, Juan Eugenio Iglesias, P. Ellen Grant, Polina Golland, Elfar Adalsteinsson
    • 📄 PDF
    • 💻 GitHub
  5. 📜 Spatiotemporal implicit neural representation for unsupervised dynamic MRI reconstruction

    • 🗓️ Publication Date: 31th Dec. 2022
    • 🧑‍🔬 Authors: Jie Feng, Ruimin Feng, Qing Wu, Zhiyong Zhang, Yuyao Zhang, Hongjiang Wei
    • 📄 [PDF](Link to PDF)
  6. 📜 Neural Implicit k-Space for Binning-free Non-Cartesian Cardiac MR Imaging

    • 🗓️ Publication Date: 16th Dec. 2022
    • 📖 Conference: International Conference on Information Processing in Medical Imaging, 2023
    • 🧑‍🔬 Authors: Wenqi Huang, Hongwei Li, Jiazhen Pan, Gastao Cruz, Daniel Rueckert, Kerstin Hammernik
    • 📄 PDF
  7. 📜 Continuous longitudinal fetus brain atlas construction via implicit neural representation

    • 🗓️ Publication Date: 14th Sep. 2022
    • 🧑‍🔬 Authors: Lixuan Chen, Jiangjie Wu, Qing Wu, Hongjiang Wei, Yuyao Zhang
    • 📄 PDF
  8. 📜 Multi-contrast MRI Super-resolution via Implicit Neural Representations

    • 🗓️ Publication Date: 27th Mar. 2023
    • 📖 Conference: MICCAI, 2023
    • 🧑‍🔬 Authors: Julian McGinnis, Suprosanna Shit, Hongwei Bran Li, Vasiliki Sideri-Lampretsa, Robert Graf, Maik Dannecker, Jiazhen Pan, Nil Stolt Ansö, Mark Mühlau, Jan S. Kirschke, Daniel Rueckert, Benedikt Wiestler
    • 📄 PDF
    • 💻 GitHub
  9. 📜 Streak artifacts reduction algorithm using an implicit neural representation in sparse-view CT.

    • 📅 Publication Date: 4th Apr., 2022

    • 📖 Journal: Medical Imaging 2022: Physics of Medical Imaging, 2022

    • 🧑‍🔬 Authors: Byeongjoon Kim, Hyunjung Shim, Jongduk Baek.

    • 📄 PDF

  10. 📜 Spatial Attention-based Implicit Neural Representation for Arbitrary Reduction of MRI Slice Spacing

    • 🗓️ Publication Date: 23rd May. 2022
    • 🧑‍🔬 Authors: Xin Wang, Sheng Wang,
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号