Awesome-Implicit-Neural-Representations-in-Medical-imaging

Awesome-Implicit-Neural-Representations-in-Medical-imaging

隐式神经表示在医学影像中的应用研究综述

该项目汇集了86篇关于隐式神经表示在医学影像领域应用的研究论文,时间跨度从2021年至2023年。涵盖图像重建、分割、配准和神经渲染等多个方向。项目提供论文列表、代码链接及相关资源,便于研究者快速获取信息。同时收录了一篇发表于arXiv的综述文章,对医学影像中隐式神经表示的应用进行了全面对比分析。

医学成像神经隐式表示图像重建分割配准Github开源项目

Implicit Neural Representation in Medical Imaging: A Comparative Survey <br> <span style="float: right"><sub><sup>ICCV 2023 CVAMD Workshop</sup></sub></span>

Awesome License: MIT PRs Welcome

:fire::fire: This is a collection of awesome articles about Implicit Neural Representation networks in medical imaging:fire::fire:

:loudspeaker: Our review paper published on arXiv: Implicit Neural Representation in Medical Imaging: A Comparative Survey :heart:

Citation

@inproceedings{molaei2023implicit, title={Implicit neural representation in medical imaging: A comparative survey}, author={Molaei, Amirali and Aminimehr, Amirhossein and Tavakoli, Armin and Kazerouni, Amirhossein and Azad, Bobby and Azad, Reza and Merhof, Dorit}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={2381--2391}, year={2023} }

Introduction

Implicitly representing image signals has gained popularity in recent years for a broad range of medical imaging applications. The most motivating reasons are the following:

  • Memory efficiency: The amount of memory demanded to represent the signal is not restricted by the signal's resolution.
  • Unlimited Resolution: They take values in the continuous domain, meaning they can generate values for coordinates in-between the pixel or voxel-wise grid
  • Effective data usage: They can learn to handle reconstruction and synthesis tasks without high-cost external annotation.

Which all are significantly important for developing an automatic medical system.<br> With the aim of providing easier access for researchers, this repo contains a comprehensive paper list of Implicit Neural Representations in Medical Imaging, including papers, codes, and related websites.<br> We considered a sum of <u>86</u> research papers spanning from 2021 to 2023.


papers

<img src="Figures/Taxonomy.png" alt="Taxonomy" width="816"> Here, we taxonomize studies that integrate implicit representations into building medical analysis models.<br>

<a name="return-to-list"></a>

(Each section is ordered by the publication dates) <img src="Figures/Reconstruction.jpg" alt="reconstruction" width="1000" height="5"><br>

Image Reconstruction


Tomography and CT

  1. 📜 IntraTomo: Self-supervised Learning-based Tomography via Sinogram Synthesis and Prediction

    • 🗓️ Publication Date: 9th Feb. 2021
    • 📖 Proceedings: IEEE/CVF International Conference on Computer Vision, 2021
    • 🧑‍🔬 Authors: Guangming Zang, Ramzi Idoughi, Rui Li, Peter Wonka, Wolfgang Heidrich
    • 📄 PDF
    • 📌 Highlight: Uses coordinate-based neural representations for CT reconstructions, capturing details often overlooked by standard deep learning. It's self-supervised, using the scanned object's own projections as training data, and further refined with geometric techniques.
  2. 📜 CoIL: Coordinate-based Internal Learning for Imaging Inverse Problems

    • 🗓️ Publication Date: 9th Feb. 2021
    • 📖 Journal: IEEE Transactions on Computational Imaging, 2021
    • 🧑‍🔬 Authors: Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg, Ulugbek S. Kamilov
    • 📄 PDF
    • 💻 GitHub
    • 📌 Highlight: Takes measurement coordinates, such as view angle θ and spatial location l in CT scans, as its input, then outputs the corresponding sensor responses for these coordinates, creating an implicit neural representation of the measurement field.
  3. 📜 Dynamic CT Reconstruction from Limited Views with Implicit Neural Representations and Parametric Motion Fields

    • 🗓️ Publication Date: 23th Apr. 2021
    • 📖 Proceedings: IEEE/CVF International Conference on Computer Vision, 2021
    • 🧑‍🔬 Authors: Albert W. Reed, Hyojin Kim, Rushil Anirudh, K. Aditya Mohan, Kyle Champley, Jingu Kang, Suren Jayasuriya
    • 📄 PDF
    • 📌 Highlight: Uses implicit neural representations (INRs) for 4D-CT reconstruction. Paired with a parametric motion field, they estimate evolving 3D objects. Using a differentiable Radon transform, reconstructions are synthesized and compared with x-ray data, improving reconstruciton quality without training data.
  4. 📜 Neural Computed Tomography

    • 🗓️ Publication Date: 17th Jan. 2022
    • 📖 Preprint: arXiv, 2022
    • 🧑‍🔬 Authors: Kunal Gupta, Brendan Colvert, Francisco Contijoch
    • 📄 PDF
    • 💻 GitHub
  5. 📜 Streak artifacts reduction algorithm using an implicit neural representation in sparse-view CT

    • 🗓️ Publication Date: 4th Apr. 2022
    • 📖 Conference: Medical Imaging 2022: Physics of Medical Imaging, 2022
    • 🧑‍🔬 Authors: Byeongjoon Kim, Hyunjung Shim, Jongduk Baek
    • 📄 PDF
  6. 📜 Self-Supervised Coordinate Projection Network for Sparse-View Computed Tomography

    • 🗓️ Publication Date: 12th Sep. 2022
    • 📖 Journal: IEEE Transactions on Computational Imaging, 2023
    • 🧑‍🔬 Authors: Qing Wu, Ruimin Feng, Hongjiang Wei, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
    • 💻 GitHub
  7. 📜 OReX: Object Reconstruction from Planar Cross-sections Using Neural Fields

    • 🗓️ Publication Date: 23th Nov. 2022
    • 📖 Conference: CVPR, 2023
    • 🧑‍🔬 Authors: Haim Sawdayee, Amir Vaxman, Amit H. Bermano
    • 📄 PDF
    • 💻 GitHub
  8. 📜 NeuRec: Incorporating Interpatient prior to Sparse-View Image Reconstruction for Neurorehabilitation

    • 🗓️ Publication Date: 21th Feb. 2022
    • 📖 Journal: BioMed Research International, 2022
    • 🧑‍🔬 Authors: Cong Liu, Qingbin Wang, Jing Zhang
    • 📄 PDF
  9. 📜 MEPNet: A Model-Driven Equivariant Proximal Network for Joint Sparse-View Reconstruction and Metal Artifact Reduction in CT Images.

    • 🗓️ Publication Date: 25th Jun. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Hong Wang, Minghao Zhou, Dong Wei, Yuexiang Li, Yefeng Zheng
    • 📄 PDF
    • 🖥️ GitHub
  10. 📜 UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography

    • 🗓️ Publication Date: 3rd Jun. 2022
    • 📖 Authors: Francisca Vasconcelos, Bobby He, Nalini Singh, Yee Whye Teh
    • 📄 PDF
    • 💻 GitHub
  11. 📜 Unsupervised Polychromatic Neural Representation for CT Metal Artifact Reduction

    • 🗓️ Publication Date: 27th Jun. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Qing Wu, Lixuan Chen, Ce Wang, Hongjiang Wei, S. Kevin Zhou, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
  12. 📜 NAISR: A 3D Neural Additive Model for Interpretable Shape Representation

    • 🗓️ Publication Date: 16th Mar. 2023
    • 📖 Preprint: arXiv
    • 🧑‍🔬 Authors: Yining Jiao, Carlton Zdanski, Julia Kimbell, Andrew Prince, Cameron Worden, Samuel Kirse, Christopher Rutter, Benjamin Shields, William Dunn
    • 📄 PDF
    • 💻 GitHub

<sub>Return to List</sub>


MRI

  1. 📜 An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonance Image using Implicit Neural Representation

    • 🗓️ Publication Date: 29th Oct. 2021
    • 🧑‍🔬 Authors: Qing Wu, Yuwei Li, Yawen Sun, Yan Zhou, Hongjiang Wei, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
    • 💻 GitHub
  2. 📜 IREM: High-Resolution Magnetic Resonance (MR) Image Reconstruction via Implicit Neural Representation

    • 🗓️ Publication Date: 29th Jun. 2021
    • 🧑‍🔬 Authors: Qing Wu, Yuwei Li, Lan Xu, Ruiming Feng, Hongjiang Wei, Qing Yang, Boliang Yu, Xiaozhao Liu, Jingyi Yu, Yuyao Zhang
    • 📄 PDF
  3. 📜 MRI Super-Resolution using Implicit Neural Representation with Frequency Domain Enhancement

    • 🗓️ Publication Date: Aug. 2022
    • 🧑‍🔬 Authors: Shuangming Mao, Seiichiro Kamata
    • 📄 PDF
  4. 📜 NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI

    • 🗓️ Publication Date: IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022
    • 🧑‍🔬 Authors: Junshen Xu, Daniel Moyer, Borjan Gagoski, Juan Eugenio Iglesias, P. Ellen Grant, Polina Golland, Elfar Adalsteinsson
    • 📄 PDF
    • 💻 GitHub
  5. 📜 Spatiotemporal implicit neural representation for unsupervised dynamic MRI reconstruction

    • 🗓️ Publication Date: 31th Dec. 2022
    • 🧑‍🔬 Authors: Jie Feng, Ruimin Feng, Qing Wu, Zhiyong Zhang, Yuyao Zhang, Hongjiang Wei
    • 📄 [PDF](Link to PDF)
  6. 📜 Neural Implicit k-Space for Binning-free Non-Cartesian Cardiac MR Imaging

    • 🗓️ Publication Date: 16th Dec. 2022
    • 📖 Conference: International Conference on Information Processing in Medical Imaging, 2023
    • 🧑‍🔬 Authors: Wenqi Huang, Hongwei Li, Jiazhen Pan, Gastao Cruz, Daniel Rueckert, Kerstin Hammernik
    • 📄 PDF
  7. 📜 Continuous longitudinal fetus brain atlas construction via implicit neural representation

    • 🗓️ Publication Date: 14th Sep. 2022
    • 🧑‍🔬 Authors: Lixuan Chen, Jiangjie Wu, Qing Wu, Hongjiang Wei, Yuyao Zhang
    • 📄 PDF
  8. 📜 Multi-contrast MRI Super-resolution via Implicit Neural Representations

    • 🗓️ Publication Date: 27th Mar. 2023
    • 📖 Conference: MICCAI, 2023
    • 🧑‍🔬 Authors: Julian McGinnis, Suprosanna Shit, Hongwei Bran Li, Vasiliki Sideri-Lampretsa, Robert Graf, Maik Dannecker, Jiazhen Pan, Nil Stolt Ansö, Mark Mühlau, Jan S. Kirschke, Daniel Rueckert, Benedikt Wiestler
    • 📄 PDF
    • 💻 GitHub
  9. 📜 Streak artifacts reduction algorithm using an implicit neural representation in sparse-view CT.

    • 📅 Publication Date: 4th Apr., 2022

    • 📖 Journal: Medical Imaging 2022: Physics of Medical Imaging, 2022

    • 🧑‍🔬 Authors: Byeongjoon Kim, Hyunjung Shim, Jongduk Baek.

    • 📄 PDF

  10. 📜 Spatial Attention-based Implicit Neural Representation for Arbitrary Reduction of MRI Slice Spacing

    • 🗓️ Publication Date: 23rd May. 2022
    • 🧑‍🔬 Authors: Xin Wang, Sheng Wang,

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多