LotteryPrediction

LotteryPrediction

将机器学习应用于彩票数据分析和预测模型

LotteryPrediction是一个开源项目,结合机器学习和数据分析技术,旨在为彩票预测提供数据驱动的解决方案。该项目通过分析历史开奖数据,识别潜在模式,并应用统计方法预测未来结果。LotteryPrediction提供多种服务级别,从基础开源版本到定制化企业解决方案。项目还包含数据可视化工具,帮助用户更好地理解彩票数据趋势。需要注意的是,该项目不保证预测准确性,仅作为辅助决策工具使用。

时间序列预测深度学习彩票预测数据分析机器学习Github开源项目

Preface

Predicting is making claims about something that will happen, often based on information from past and from current state. Screenshot of "Prediction"

Everyone solves the problem of prediction every day with various degrees of success. For example weather, harvest, energy consumption, movements of forex (foreign exchange) currency pairs or of shares of stocks, earthquakes, and a lot of other stuff needs to be predicted. ...

now I am taking the course of Wharton's Business Analytics: From Data to Insights program!

Week 2: Module Introduction and Instructions By the end of Week 2 - Descriptive Analytics: Describing and Forecasting Future Events, you should be able to:

Use historical data to estimate forecasts for future events using trends and seasonality Calculate the descriptive sample statistics for demand distributions Discuss drawbacks of using Moving Averages Forecasting Key Activities for Week 2 Videos 1-29 Practice Quiz 1: Newsvendor Concepts Practice Quiz 2: Moving Averages Practice Quiz 3: Trends and Seasonality Week 2: Knowledge Check Assignment 2: iD Fresh Food Case Study

Cotler Pricing Sheet

*Effective Date: 1204/2023

PackageFeaturesPricing
Open Source- Basic analytics functionalityFree
- GPTs free trail: [GPTs:https://chat.openai.com/gpts/editor/g-OtkLCltUZ]
- Limited customization
--------------------------------------------------------------------------------------------------------------------------------------
Low-Cost, Low-Accuracy- Enhanced prediction capabilities$9.99/month
- Email support zheng532@126.com or WeChat ID zhenglw532
- Limited precision
- Suitable for small-scale projects
--------------------------------------------------------------------------------------------------------------------------------------
Mid-High Cost, SOTA Accuracy- State-of-the-art prediction accuracy$49.99/month
- Priority email and chat support
- High precision and customization options
- Suitable for medium to large-scale projects
--------------------------------------------------------------------------------------------------------------------------------------
Enterprise Custom Solutions- Tailored solutions for specific business needsContact Us for a Quote
- Dedicated account manager and premium supportmailto zheng532@126.com
- Advanced machine learning models
- Scalable infrastructure for high-demand applications

Notes:

  • All prices are listed on a per-month basis.
  • Custom enterprise solutions are available upon request; please contact our sales team for detailed discussions.
  • Prices are subject to change; please refer to our website or contact our sales team for the most up-to-date information.

For inquiries or to subscribe to a plan, please contact our sales team zheng532@126.com.

Train the model:

Use the training data to train the model, adjusting the model's parameters as needed to improve its accuracy.

the model predict:

Use the testing data to evaluate the model's performance and fine-tune it as needed. Deploy the model: Deploy the trained model in a production environment, where it can be used to analyze real-time lottery data and make predictions about future draws.

This is just one possible approach to building an AI transformer architecture model for time-series lottery data analytics.

There may be other approaches that could also be effective, depending on the specific requirements and constraints of the project.

data Visualize examples:

using Flash

Screenshot of "LotteryPrediction" Screenshot of "LotteryPrediction" Screenshot of "LotteryPrediction"

data visualization

using fbProphet:

fbProphet darts

todos:

streamlit: https://docs.streamlit.io/en/stable/api.html#display-data

plotly:https://plotly.com/python/time-series/

Live Demos

https://yangboz.github.io/labs/lp/LotteryPrediction_AmCharts_R.swf https://yangboz.github.io/labs/lp/LotteryPrediction_AmCharts_RCX.swf https://yangboz.github.io/labs/lp/LotteryPrediction_FlexCharts.swf

notes

besides of following "law of proability","Probability: Independent Events", there are still "Saying "a Tail is due", or "just one more go, my luck is due to change" is called The Gambler's Fallacy" existed.

here we are not garantee to help with you to win lottery prize. if you got lucky from here. please donate here, we also donate to charities.

Please donate to ETH: 0xa45542927c06591a224c28ca3596a3bD56C499fb

[howto install and use it?]https://github.com/yangboz/LotteryPrediction/wiki#how-can-i-install-and-use-it

first of first, we can not grantee 100% of prediction accuracy to your get rich dream.

custom company service mailto: z@smartkit.club, with your sample history lottery-data, and must have plain text of game-rule's introduction.

Refs:

http://deeplearning4j.org/usingrnns.html

http://www.scriptol.com/programming/list-algorithms.php

http://www.ipedr.com/vol25/54-ICEME2011-N20032.pdf

http://www.brightpointinc.com/flexdemos/chartslicer/chartslicersample.html

http://stats.stackexchange.com/questions/68662/using-deep-learning-for-time-series-prediction

Python logutils

Python data analysis_pandas

Python data minning_orange

Python data-mining and pattern recognition packages

Python Machine Learning Packages

Conference on 100 YEARS OF ALAN TURING AND 20 YEARS OF SLAIS

USA Draft Lottery 1970

Python Scikit-Learn

Python Multivarite Pattern Analysis

BigML

Patsy

StatModel

Neural Lotto — Lottery Drawing Predicting Method

Random.org

Predictive Analytics Guide

[TensorFlow Tutorial for Time Series Prediction:] (https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series)

Roadmap:

landing page:

PoCs

https://github.com/yangboz/LotteryPrediction/tree/master/pocs

API public service:

Phase I.Graphics: Looking at Data;

1.A single variable:Shape and Distribution; ( Dot/Jitter plots,Histograms and Kernel Density Estimates,Cumulative Distribution Function,Rank-Order...)

2.Two variables:Establishing Relationships; ( Scatter plots,Conquering Noise,Logarithmic Plots,Banking...)

3.Time as a variable: Time-Series Analysis; (Smoothing,Correlation,Filters,Convolutions..)

4.More than two variables;Graphical Multivariate Analysis;(False-color Plots,Multi plots...)

5.Intermezzo:A Data Analysis Session;(Session,gnuplot..)

6...

Phase II.Analytics: Modeling Data;

1.Guesstimation and the back of envelope;

2.Models from scaling arguments;

3.Arguments from probability models;

4...

Phase III.Computation: Mining Data;

1.Simulations;

2.Find clusters;

3.Seeing the forest for the decision trees;

4....

Phase IV.Applications: Using Data;

1.Reporting, BI (Business Intelligence),Dashboard;

2.Financial calculations and modeling;

3.Predictive analytics;

4....

=======

Draft plan

Phase I.Graphics: Looking at Data;

1.A single variable:Shape and Distribution; ( Dot/Jitter plots,Histograms and Kernel Density Estimates,Cumulative Distribution Function,Rank-Order...)

2.Two variables:Establishing Relationships; ( Scatter plots,Conquering Noise,Logarithmic Plots,Banking...)

3.Time as a variable: Time-Series Analysis; (Smoothing,Correlation,Filters,Convolutions..)

4.More than two variables;Graphical Multivariate Analysis;(False-color Plots,Multi plots...)

5.Intermezzo:A Data Analysis Session;(Session,gnuplot..)

6...

Phase II.Analytics: Modeling Data;

1.Guesstimation and the back of envelope;

2.Models from scaling arguments;

3.Arguments from probability models;

4...

Phase III.Computation: Mining Data;

1.Simulations;

2.Find clusters;

3.Seeing the forest for the decision trees;

4....

Phase IV.Applications: Using Data;

1.Reporting, BI (Business Intelligence),Dashboard;

2.Financial calculations and modeling;

3.Predictive analytics;

4....

TODO:

fbprophet model finetune: https://facebook.github.io/prophet/docs/quick_start.html

ChatGPT

according to ChatGPT's advice:

Writing a lottery prediction program can be a challenging task as it involves analyzing past lottery results, identifying patterns, and using statistical techniques to make predictions about future draws.

Here are some steps you can follow to write a lottery prediction program:

Collect data: Gather a large dataset of past lottery results, including the numbers drawn and the date of the draw.

Preprocess data: Clean and organize the data to remove any errors or inconsistencies.

Analyze data: Use statistical techniques such as frequency analysis, clustering, and regression to identify patterns and trends in the data.

Build a model: Use the insights gained from the data analysis to build a predictive model that can make predictions about future lottery draws.

Test the model: Use the model to make predictions on a separate dataset of past lottery results and evaluate its performance.

Fine-tune the model: If necessary, make adjustments to the model based on the results of the testing phase to improve its accuracy.

Implement the program: Write the code for the lottery prediction program, including any necessary user interfaces and input/output mechanisms.

It is important to note that the accuracy of a lottery prediction program

will depends on the quality of the data,

the complexity of the model,

and the skill of the developer.

There is no guarantee that a lottery prediction program will be successful,

and using such a program for financial gain may not be legal in some jurisdictions.

References

TensorFlow Tutorial for Time Series Prediction: https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series

Time Series Forecasting made easy with Darts

https://unit8co.github.io/darts/#:~:text=darts%20is%20a%20Python%20library,%2C%20similar%20to%20scikit%2Dlearn.

ETSformer: Exponential Smoothing Transformers for Time-Series Forecasting

https://blog.salesforceairesearch.com/etsformer-time-series-forecasting/

papers

https://www.datascience.us/predicting-success-in-lottery-with-deep-learning/

free version support and trail

https://github.com/yangboz/LotteryPrediction/wiki

Commercial support and training

Commercial support and training is available , please mailto zheng532@126.com or WeChat ID zhenglw532 with your historic-data and plain english description and budget plan 10$~50$ PER CASE .

verify WIP

Transformer way: https://github.com/yangboz/Informer2020?tab=readme-ov-file

LLM way: https://github.com/KimMeen/Time-LLM/tree/main/scripts

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多