LotteryPrediction

LotteryPrediction

将机器学习应用于彩票数据分析和预测模型

LotteryPrediction是一个开源项目,结合机器学习和数据分析技术,旨在为彩票预测提供数据驱动的解决方案。该项目通过分析历史开奖数据,识别潜在模式,并应用统计方法预测未来结果。LotteryPrediction提供多种服务级别,从基础开源版本到定制化企业解决方案。项目还包含数据可视化工具,帮助用户更好地理解彩票数据趋势。需要注意的是,该项目不保证预测准确性,仅作为辅助决策工具使用。

时间序列预测深度学习彩票预测数据分析机器学习Github开源项目

Preface

Predicting is making claims about something that will happen, often based on information from past and from current state. Screenshot of "Prediction"

Everyone solves the problem of prediction every day with various degrees of success. For example weather, harvest, energy consumption, movements of forex (foreign exchange) currency pairs or of shares of stocks, earthquakes, and a lot of other stuff needs to be predicted. ...

now I am taking the course of Wharton's Business Analytics: From Data to Insights program!

Week 2: Module Introduction and Instructions By the end of Week 2 - Descriptive Analytics: Describing and Forecasting Future Events, you should be able to:

Use historical data to estimate forecasts for future events using trends and seasonality Calculate the descriptive sample statistics for demand distributions Discuss drawbacks of using Moving Averages Forecasting Key Activities for Week 2 Videos 1-29 Practice Quiz 1: Newsvendor Concepts Practice Quiz 2: Moving Averages Practice Quiz 3: Trends and Seasonality Week 2: Knowledge Check Assignment 2: iD Fresh Food Case Study

Cotler Pricing Sheet

*Effective Date: 1204/2023

PackageFeaturesPricing
Open Source- Basic analytics functionalityFree
- GPTs free trail: [GPTs:https://chat.openai.com/gpts/editor/g-OtkLCltUZ]
- Limited customization
--------------------------------------------------------------------------------------------------------------------------------------
Low-Cost, Low-Accuracy- Enhanced prediction capabilities$9.99/month
- Email support zheng532@126.com or WeChat ID zhenglw532
- Limited precision
- Suitable for small-scale projects
--------------------------------------------------------------------------------------------------------------------------------------
Mid-High Cost, SOTA Accuracy- State-of-the-art prediction accuracy$49.99/month
- Priority email and chat support
- High precision and customization options
- Suitable for medium to large-scale projects
--------------------------------------------------------------------------------------------------------------------------------------
Enterprise Custom Solutions- Tailored solutions for specific business needsContact Us for a Quote
- Dedicated account manager and premium supportmailto zheng532@126.com
- Advanced machine learning models
- Scalable infrastructure for high-demand applications

Notes:

  • All prices are listed on a per-month basis.
  • Custom enterprise solutions are available upon request; please contact our sales team for detailed discussions.
  • Prices are subject to change; please refer to our website or contact our sales team for the most up-to-date information.

For inquiries or to subscribe to a plan, please contact our sales team zheng532@126.com.

Train the model:

Use the training data to train the model, adjusting the model's parameters as needed to improve its accuracy.

the model predict:

Use the testing data to evaluate the model's performance and fine-tune it as needed. Deploy the model: Deploy the trained model in a production environment, where it can be used to analyze real-time lottery data and make predictions about future draws.

This is just one possible approach to building an AI transformer architecture model for time-series lottery data analytics.

There may be other approaches that could also be effective, depending on the specific requirements and constraints of the project.

data Visualize examples:

using Flash

Screenshot of "LotteryPrediction" Screenshot of "LotteryPrediction" Screenshot of "LotteryPrediction"

data visualization

using fbProphet:

fbProphet darts

todos:

streamlit: https://docs.streamlit.io/en/stable/api.html#display-data

plotly:https://plotly.com/python/time-series/

Live Demos

https://yangboz.github.io/labs/lp/LotteryPrediction_AmCharts_R.swf https://yangboz.github.io/labs/lp/LotteryPrediction_AmCharts_RCX.swf https://yangboz.github.io/labs/lp/LotteryPrediction_FlexCharts.swf

notes

besides of following "law of proability","Probability: Independent Events", there are still "Saying "a Tail is due", or "just one more go, my luck is due to change" is called The Gambler's Fallacy" existed.

here we are not garantee to help with you to win lottery prize. if you got lucky from here. please donate here, we also donate to charities.

Please donate to ETH: 0xa45542927c06591a224c28ca3596a3bD56C499fb

[howto install and use it?]https://github.com/yangboz/LotteryPrediction/wiki#how-can-i-install-and-use-it

first of first, we can not grantee 100% of prediction accuracy to your get rich dream.

custom company service mailto: z@smartkit.club, with your sample history lottery-data, and must have plain text of game-rule's introduction.

Refs:

http://deeplearning4j.org/usingrnns.html

http://www.scriptol.com/programming/list-algorithms.php

http://www.ipedr.com/vol25/54-ICEME2011-N20032.pdf

http://www.brightpointinc.com/flexdemos/chartslicer/chartslicersample.html

http://stats.stackexchange.com/questions/68662/using-deep-learning-for-time-series-prediction

Python logutils

Python data analysis_pandas

Python data minning_orange

Python data-mining and pattern recognition packages

Python Machine Learning Packages

Conference on 100 YEARS OF ALAN TURING AND 20 YEARS OF SLAIS

USA Draft Lottery 1970

Python Scikit-Learn

Python Multivarite Pattern Analysis

BigML

Patsy

StatModel

Neural Lotto — Lottery Drawing Predicting Method

Random.org

Predictive Analytics Guide

[TensorFlow Tutorial for Time Series Prediction:] (https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series)

Roadmap:

landing page:

PoCs

https://github.com/yangboz/LotteryPrediction/tree/master/pocs

API public service:

Phase I.Graphics: Looking at Data;

1.A single variable:Shape and Distribution; ( Dot/Jitter plots,Histograms and Kernel Density Estimates,Cumulative Distribution Function,Rank-Order...)

2.Two variables:Establishing Relationships; ( Scatter plots,Conquering Noise,Logarithmic Plots,Banking...)

3.Time as a variable: Time-Series Analysis; (Smoothing,Correlation,Filters,Convolutions..)

4.More than two variables;Graphical Multivariate Analysis;(False-color Plots,Multi plots...)

5.Intermezzo:A Data Analysis Session;(Session,gnuplot..)

6...

Phase II.Analytics: Modeling Data;

1.Guesstimation and the back of envelope;

2.Models from scaling arguments;

3.Arguments from probability models;

4...

Phase III.Computation: Mining Data;

1.Simulations;

2.Find clusters;

3.Seeing the forest for the decision trees;

4....

Phase IV.Applications: Using Data;

1.Reporting, BI (Business Intelligence),Dashboard;

2.Financial calculations and modeling;

3.Predictive analytics;

4....

=======

Draft plan

Phase I.Graphics: Looking at Data;

1.A single variable:Shape and Distribution; ( Dot/Jitter plots,Histograms and Kernel Density Estimates,Cumulative Distribution Function,Rank-Order...)

2.Two variables:Establishing Relationships; ( Scatter plots,Conquering Noise,Logarithmic Plots,Banking...)

3.Time as a variable: Time-Series Analysis; (Smoothing,Correlation,Filters,Convolutions..)

4.More than two variables;Graphical Multivariate Analysis;(False-color Plots,Multi plots...)

5.Intermezzo:A Data Analysis Session;(Session,gnuplot..)

6...

Phase II.Analytics: Modeling Data;

1.Guesstimation and the back of envelope;

2.Models from scaling arguments;

3.Arguments from probability models;

4...

Phase III.Computation: Mining Data;

1.Simulations;

2.Find clusters;

3.Seeing the forest for the decision trees;

4....

Phase IV.Applications: Using Data;

1.Reporting, BI (Business Intelligence),Dashboard;

2.Financial calculations and modeling;

3.Predictive analytics;

4....

TODO:

fbprophet model finetune: https://facebook.github.io/prophet/docs/quick_start.html

ChatGPT

according to ChatGPT's advice:

Writing a lottery prediction program can be a challenging task as it involves analyzing past lottery results, identifying patterns, and using statistical techniques to make predictions about future draws.

Here are some steps you can follow to write a lottery prediction program:

Collect data: Gather a large dataset of past lottery results, including the numbers drawn and the date of the draw.

Preprocess data: Clean and organize the data to remove any errors or inconsistencies.

Analyze data: Use statistical techniques such as frequency analysis, clustering, and regression to identify patterns and trends in the data.

Build a model: Use the insights gained from the data analysis to build a predictive model that can make predictions about future lottery draws.

Test the model: Use the model to make predictions on a separate dataset of past lottery results and evaluate its performance.

Fine-tune the model: If necessary, make adjustments to the model based on the results of the testing phase to improve its accuracy.

Implement the program: Write the code for the lottery prediction program, including any necessary user interfaces and input/output mechanisms.

It is important to note that the accuracy of a lottery prediction program

will depends on the quality of the data,

the complexity of the model,

and the skill of the developer.

There is no guarantee that a lottery prediction program will be successful,

and using such a program for financial gain may not be legal in some jurisdictions.

References

TensorFlow Tutorial for Time Series Prediction: https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series

Time Series Forecasting made easy with Darts

https://unit8co.github.io/darts/#:~:text=darts%20is%20a%20Python%20library,%2C%20similar%20to%20scikit%2Dlearn.

ETSformer: Exponential Smoothing Transformers for Time-Series Forecasting

https://blog.salesforceairesearch.com/etsformer-time-series-forecasting/

papers

https://www.datascience.us/predicting-success-in-lottery-with-deep-learning/

free version support and trail

https://github.com/yangboz/LotteryPrediction/wiki

Commercial support and training

Commercial support and training is available , please mailto zheng532@126.com or WeChat ID zhenglw532 with your historic-data and plain english description and budget plan 10$~50$ PER CASE .

verify WIP

Transformer way: https://github.com/yangboz/Informer2020?tab=readme-ov-file

LLM way: https://github.com/KimMeen/Time-LLM/tree/main/scripts

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多