LotteryPrediction

LotteryPrediction

将机器学习应用于彩票数据分析和预测模型

LotteryPrediction是一个开源项目,结合机器学习和数据分析技术,旨在为彩票预测提供数据驱动的解决方案。该项目通过分析历史开奖数据,识别潜在模式,并应用统计方法预测未来结果。LotteryPrediction提供多种服务级别,从基础开源版本到定制化企业解决方案。项目还包含数据可视化工具,帮助用户更好地理解彩票数据趋势。需要注意的是,该项目不保证预测准确性,仅作为辅助决策工具使用。

时间序列预测深度学习彩票预测数据分析机器学习Github开源项目

Preface

Predicting is making claims about something that will happen, often based on information from past and from current state. Screenshot of "Prediction"

Everyone solves the problem of prediction every day with various degrees of success. For example weather, harvest, energy consumption, movements of forex (foreign exchange) currency pairs or of shares of stocks, earthquakes, and a lot of other stuff needs to be predicted. ...

now I am taking the course of Wharton's Business Analytics: From Data to Insights program!

Week 2: Module Introduction and Instructions By the end of Week 2 - Descriptive Analytics: Describing and Forecasting Future Events, you should be able to:

Use historical data to estimate forecasts for future events using trends and seasonality Calculate the descriptive sample statistics for demand distributions Discuss drawbacks of using Moving Averages Forecasting Key Activities for Week 2 Videos 1-29 Practice Quiz 1: Newsvendor Concepts Practice Quiz 2: Moving Averages Practice Quiz 3: Trends and Seasonality Week 2: Knowledge Check Assignment 2: iD Fresh Food Case Study

Cotler Pricing Sheet

*Effective Date: 1204/2023

PackageFeaturesPricing
Open Source- Basic analytics functionalityFree
- GPTs free trail: [GPTs:https://chat.openai.com/gpts/editor/g-OtkLCltUZ]
- Limited customization
--------------------------------------------------------------------------------------------------------------------------------------
Low-Cost, Low-Accuracy- Enhanced prediction capabilities$9.99/month
- Email support zheng532@126.com or WeChat ID zhenglw532
- Limited precision
- Suitable for small-scale projects
--------------------------------------------------------------------------------------------------------------------------------------
Mid-High Cost, SOTA Accuracy- State-of-the-art prediction accuracy$49.99/month
- Priority email and chat support
- High precision and customization options
- Suitable for medium to large-scale projects
--------------------------------------------------------------------------------------------------------------------------------------
Enterprise Custom Solutions- Tailored solutions for specific business needsContact Us for a Quote
- Dedicated account manager and premium supportmailto zheng532@126.com
- Advanced machine learning models
- Scalable infrastructure for high-demand applications

Notes:

  • All prices are listed on a per-month basis.
  • Custom enterprise solutions are available upon request; please contact our sales team for detailed discussions.
  • Prices are subject to change; please refer to our website or contact our sales team for the most up-to-date information.

For inquiries or to subscribe to a plan, please contact our sales team zheng532@126.com.

Train the model:

Use the training data to train the model, adjusting the model's parameters as needed to improve its accuracy.

the model predict:

Use the testing data to evaluate the model's performance and fine-tune it as needed. Deploy the model: Deploy the trained model in a production environment, where it can be used to analyze real-time lottery data and make predictions about future draws.

This is just one possible approach to building an AI transformer architecture model for time-series lottery data analytics.

There may be other approaches that could also be effective, depending on the specific requirements and constraints of the project.

data Visualize examples:

using Flash

Screenshot of "LotteryPrediction" Screenshot of "LotteryPrediction" Screenshot of "LotteryPrediction"

data visualization

using fbProphet:

fbProphet darts

todos:

streamlit: https://docs.streamlit.io/en/stable/api.html#display-data

plotly:https://plotly.com/python/time-series/

Live Demos

https://yangboz.github.io/labs/lp/LotteryPrediction_AmCharts_R.swf https://yangboz.github.io/labs/lp/LotteryPrediction_AmCharts_RCX.swf https://yangboz.github.io/labs/lp/LotteryPrediction_FlexCharts.swf

notes

besides of following "law of proability","Probability: Independent Events", there are still "Saying "a Tail is due", or "just one more go, my luck is due to change" is called The Gambler's Fallacy" existed.

here we are not garantee to help with you to win lottery prize. if you got lucky from here. please donate here, we also donate to charities.

Please donate to ETH: 0xa45542927c06591a224c28ca3596a3bD56C499fb

[howto install and use it?]https://github.com/yangboz/LotteryPrediction/wiki#how-can-i-install-and-use-it

first of first, we can not grantee 100% of prediction accuracy to your get rich dream.

custom company service mailto: z@smartkit.club, with your sample history lottery-data, and must have plain text of game-rule's introduction.

Refs:

http://deeplearning4j.org/usingrnns.html

http://www.scriptol.com/programming/list-algorithms.php

http://www.ipedr.com/vol25/54-ICEME2011-N20032.pdf

http://www.brightpointinc.com/flexdemos/chartslicer/chartslicersample.html

http://stats.stackexchange.com/questions/68662/using-deep-learning-for-time-series-prediction

Python logutils

Python data analysis_pandas

Python data minning_orange

Python data-mining and pattern recognition packages

Python Machine Learning Packages

Conference on 100 YEARS OF ALAN TURING AND 20 YEARS OF SLAIS

USA Draft Lottery 1970

Python Scikit-Learn

Python Multivarite Pattern Analysis

BigML

Patsy

StatModel

Neural Lotto — Lottery Drawing Predicting Method

Random.org

Predictive Analytics Guide

[TensorFlow Tutorial for Time Series Prediction:] (https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series)

Roadmap:

landing page:

PoCs

https://github.com/yangboz/LotteryPrediction/tree/master/pocs

API public service:

Phase I.Graphics: Looking at Data;

1.A single variable:Shape and Distribution; ( Dot/Jitter plots,Histograms and Kernel Density Estimates,Cumulative Distribution Function,Rank-Order...)

2.Two variables:Establishing Relationships; ( Scatter plots,Conquering Noise,Logarithmic Plots,Banking...)

3.Time as a variable: Time-Series Analysis; (Smoothing,Correlation,Filters,Convolutions..)

4.More than two variables;Graphical Multivariate Analysis;(False-color Plots,Multi plots...)

5.Intermezzo:A Data Analysis Session;(Session,gnuplot..)

6...

Phase II.Analytics: Modeling Data;

1.Guesstimation and the back of envelope;

2.Models from scaling arguments;

3.Arguments from probability models;

4...

Phase III.Computation: Mining Data;

1.Simulations;

2.Find clusters;

3.Seeing the forest for the decision trees;

4....

Phase IV.Applications: Using Data;

1.Reporting, BI (Business Intelligence),Dashboard;

2.Financial calculations and modeling;

3.Predictive analytics;

4....

=======

Draft plan

Phase I.Graphics: Looking at Data;

1.A single variable:Shape and Distribution; ( Dot/Jitter plots,Histograms and Kernel Density Estimates,Cumulative Distribution Function,Rank-Order...)

2.Two variables:Establishing Relationships; ( Scatter plots,Conquering Noise,Logarithmic Plots,Banking...)

3.Time as a variable: Time-Series Analysis; (Smoothing,Correlation,Filters,Convolutions..)

4.More than two variables;Graphical Multivariate Analysis;(False-color Plots,Multi plots...)

5.Intermezzo:A Data Analysis Session;(Session,gnuplot..)

6...

Phase II.Analytics: Modeling Data;

1.Guesstimation and the back of envelope;

2.Models from scaling arguments;

3.Arguments from probability models;

4...

Phase III.Computation: Mining Data;

1.Simulations;

2.Find clusters;

3.Seeing the forest for the decision trees;

4....

Phase IV.Applications: Using Data;

1.Reporting, BI (Business Intelligence),Dashboard;

2.Financial calculations and modeling;

3.Predictive analytics;

4....

TODO:

fbprophet model finetune: https://facebook.github.io/prophet/docs/quick_start.html

ChatGPT

according to ChatGPT's advice:

Writing a lottery prediction program can be a challenging task as it involves analyzing past lottery results, identifying patterns, and using statistical techniques to make predictions about future draws.

Here are some steps you can follow to write a lottery prediction program:

Collect data: Gather a large dataset of past lottery results, including the numbers drawn and the date of the draw.

Preprocess data: Clean and organize the data to remove any errors or inconsistencies.

Analyze data: Use statistical techniques such as frequency analysis, clustering, and regression to identify patterns and trends in the data.

Build a model: Use the insights gained from the data analysis to build a predictive model that can make predictions about future lottery draws.

Test the model: Use the model to make predictions on a separate dataset of past lottery results and evaluate its performance.

Fine-tune the model: If necessary, make adjustments to the model based on the results of the testing phase to improve its accuracy.

Implement the program: Write the code for the lottery prediction program, including any necessary user interfaces and input/output mechanisms.

It is important to note that the accuracy of a lottery prediction program

will depends on the quality of the data,

the complexity of the model,

and the skill of the developer.

There is no guarantee that a lottery prediction program will be successful,

and using such a program for financial gain may not be legal in some jurisdictions.

References

TensorFlow Tutorial for Time Series Prediction: https://github.com/tgjeon/TensorFlow-Tutorials-for-Time-Series

Time Series Forecasting made easy with Darts

https://unit8co.github.io/darts/#:~:text=darts%20is%20a%20Python%20library,%2C%20similar%20to%20scikit%2Dlearn.

ETSformer: Exponential Smoothing Transformers for Time-Series Forecasting

https://blog.salesforceairesearch.com/etsformer-time-series-forecasting/

papers

https://www.datascience.us/predicting-success-in-lottery-with-deep-learning/

free version support and trail

https://github.com/yangboz/LotteryPrediction/wiki

Commercial support and training

Commercial support and training is available , please mailto zheng532@126.com or WeChat ID zhenglw532 with your historic-data and plain english description and budget plan 10$~50$ PER CASE .

verify WIP

Transformer way: https://github.com/yangboz/Informer2020?tab=readme-ov-file

LLM way: https://github.com/KimMeen/Time-LLM/tree/main/scripts

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多