awesome-semi-supervised-learning

awesome-semi-supervised-learning

半监督学习资源汇总,减少标注成本,提升分类效果

全面整理的半监督学习资源列表,包括最新研究、代码库和各种应用。半监督学习通过结合大量无标签数据和少量有标签数据,减少标注成本并提升模型准确度。资源涵盖计算机视觉、自然语言处理、生成模型、图基方法等多个领域,适用于深度学习框架。提供详细的文献综述、代码实现以及相关书籍和讲座链接,帮助用户了解和应用半监督学习技术。

Semi-Supervised Learning深度学习分类生成模型半监督学习方法Github开源项目

优秀的半监督学习

优秀
MIT许可证
接受PRs
维护

<p align="center"> <img width="300" src="https://i.imgur.com/Ky2jxnj.png" "优秀!"> </p>

一份精心策划的优秀半监督学习资源列表。受到awesome-deep-visionawesome-deep-learning-papersawesome-self-supervised-learning的启发。

背景

<img src="https://i.imgur.com/xXi9N40.png">

什么是半监督学习?

它是一种特殊的分类形式。传统分类器仅使用标记数据(特征/标签对)进行训练。然而,标记实例通常很难获得,且代价高昂或耗时,因为它们需要有经验的人工注释者的努力。同时,未标记的数据可能相对容易收集,但利用它们的方法却不多。半监督学习 通过结合大量未标记的数据和标记的数据来建立更好的分类器,从而解决了这个问题。由于半监督学习需要的人工努力较少且准确率更高,因此它在理论和实践中都备受关注。

有多少种半监督学习方法?

很多。一些常用的方法包括:生成混合模型的EM、自训练、一致性正则化、协同训练、横向支持向量机和基于图的方法。随着深度学习的兴起,大部分这些方法被改编并集成到现有的深度学习框架中,以利用未标记的数据。

半监督学习方法如何利用未标记数据?

半监督学习方法使用未标记数据来修改或重新排序从标记数据中获得的假设。尽管并非所有方法都是概率性的,但更易于查看的方法是通过p(y|x)表示假设,通过p(x)表示未标记数据。生成模型有共同参数用于联合分布p(x,y)。可以很容易地看到p(x)影响p(y|x)。包含EM的混合模型属于这一类,某种程度上自训练也算。许多其他方法都是判别性的,包括横向SVM、高斯过程、信息正则化、基于图的方法和大多数基于深度学习的方法。原始的判别训练不能用于半监督学习,因为忽略了p(x)来估计p(y|x)。为了解决这个问题,常常将*p(x)相关的项引入目标函数中,相当于假设p(y|x)p(x)*共享参数。

(来源:SSL文献调查。

<figure> <p align="center"> <img src="https://i.imgur.com/PJ340SK.png" width="600"> <figcaption>未标记数据在半监督学习中的影响示例。 (图片来源:<a href="https://en.wikipedia.org/wiki/Semi-supervised_learning">维基百科</a>) </figcaption> </p> </figure>

贡献

如果您发现任何错误,或希望添加一些论文,请随时通过联系或者创建一个pull request来贡献到此列表,使用以下Markdown格式:

- 论文名称。 [[pdf]](链接) [[code]](链接) - 作者1,作者2,和作者3。 *会议年份*

并将它们添加到files/中的相应markdown文件中。

<!-- ## 目录 - [书籍](#books) - [调查和概述](#surveys--overview) - [计算机视觉](#computer-vision) - [自然语言处理](#nlp) - [生成模型和任务](#generative-models--tasks) - [基于图的SSL](#graph-based-ssl) - [理论](#theory) - [强化学习、元学习和机器人](#reinforcement-learning-meta-learning--robotics) - [回归](#regression) - [其他](#other) - [讲座](#talks) - [论文](#thesis) - [博客](#blogs) -->

书籍

  • 半监督学习书籍. Olivier Chapelle, Bernhard Schölkopf, Alexander Zien. IEEE神经网络交易2009

代码库

调查和概述

计算机视觉

请注意,对于图像和目标分割任务,我们还包括使用弱标注(例如图像类)的弱监督学习方法。

自然语言处理

论文清单

生成模型和任务

论文清单

基于图的SSL

论文清单

理论

论文清单

强化学习、元学习和机器人

论文清单

回归

论文清单

其他

论文清单

讲座

论文

博客

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多