ukr-roberta-base

ukr-roberta-base

乌克兰文HuggingFace模型的语料库预训练

该项目使用乌克兰语言的多种语料库,并结合HuggingFace的Roberta分词器进行了处理。所使用的语料包括乌克兰维基百科、OSCAR数据集及社交网络样本。通过V100硬件加速的方法,预训练出与roberta-base-cased架构类似的模型,拥有12层、768个隐藏单元和125M参数。有关详细的训练配置和技术细节,请参阅原始项目。

HuggingFace开源项目模型GithubHuggingfaceukr-roberta-baseUkrainian Wikipedia训练数据语言模型

ukr-roberta-base项目介绍

项目背景

ukr-roberta-base是一个为乌克兰语设计的语言模型,其目的是提高对乌克兰语文本的理解和处理能力。这一项目采用了流行的Roberta架构,并经过特殊训练以适应乌克兰语的特点,从而为相关的自然语言处理任务提供支持。

训练语料

为了让ukr-roberta-base具备良好的文本分析能力,研究人员使用了大量的乌克兰语语料库进行预训练。具体包括:

  • 乌克兰维基百科(2020年5月版本)

    • 包含18,001,466行文本
    • 含有约201,207,739个单词
    • 字符数达到2,647,891,947
  • 乌克兰OSCAR去重数据集

    • 提供56,560,011行文本
    • 含有约2,250,210,650个单词
    • 总字符数为29,705,050,592
  • 取自社交网络的样本文本

    • 提供11,245,710行文本
    • 含有约128,461,796个单词
    • 字符总数为1,632,567,763

以上语料合计形成了一个庞大的训练集,共计85,807,187行,2,579,880,185个单词,以及33,985,510,302个字符。这些语料经过拼接并使用HuggingFace的Roberta分词器进行了分词处理。

预训练细节

在技术实现上,ukr-roberta-base模型采用了HuggingFace提供的教程代码进行训练,其模型架构为roberta-base-cased,包括12层网络、768维隐藏单元、12个注意头,并拥有1.25亿个参数。实际训练过程中,共使用了4个V100 GPU进行了大约85小时的训练。模型的训练配置可以在原始代码库中找到详细信息。

作者信息

该项目由Vitalii Radchenko主导开发,感兴趣的朋友可以在推特上@vitaliradchenko找到他以取得进一步联系。

ukr-roberta-base的推出为乌克兰语的自然语言处理提供了强有力的工具,能在翻译、文本生成、情感分析等多个领域发挥作用。通过使用这一模型,开发者可以更好地理解和处理乌克兰语数据,从而在相关应用中实现更高的智能和效率。

编辑推荐精选

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

TRELLIS

TRELLIS

用于可扩展和多功能 3D 生成的结构化 3D 潜在表示

TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。

ai-agents-for-beginners

ai-agents-for-beginners

10 节课教你开启构建 AI 代理所需的一切知识

AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

下拉加载更多