.. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers :alt: GitHub stars
.. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/network :alt: GitHub forks
.. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE :alt: License
.. image:: https://awesome.re/badge-flat2.svg :target: https://awesome.re/badge-flat2.svg :alt: Awesome
.. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink :target: https://github.com/Minqi824/ADBench :alt: Benchmark
Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>
_
(also known as Anomaly Detection) is an exciting yet challenging field,
which aims to identify outlying objects that are deviant from the general data distribution.
Outlier detection has been proven critical in many fields, such as credit card
fraud analytics, network intrusion detection, and mechanical unit defect detection.
This repository collects:
#. Books & Academic Papers #. Online Courses and Videos #. Outlier Datasets #. Open-source and Commercial Libraries/Toolkits #. Key Conferences & Journals
More items will be added to the repository. Please feel free to suggest other key resources by opening an issue report, submitting a pull request, or dropping me an email @ (yzhao010@usc.edu). Enjoy reading!
BTW, you may find my [GitHub] <https://github.com/yzhao062>
_ and
[outlier detection papers] <https://scholar.google.com/citations?user=zoGDYsoAAAAJ&hl=en>
_ useful,
especially PyOD library <https://github.com/yzhao062/pyod>
_ and ADBench benchmark <https://github.com/Minqi824/ADBench>
_.
1. Books & Tutorials & Benchmarks <#1-books--tutorials--benchmarks>
_
1.1. Books <#11-books>
_1.2. Tutorials <#12-tutorials>
_1.3. Benchmarks <#13-benchmarks>
_2. Courses/Seminars/Videos <#2-coursesseminarsvideos>
_
3. Toolbox & Datasets <#3-toolbox--datasets>
_
3.1. Multivariate data outlier detection <#31-multivariate-data>
_3.2. Time series outlier detection <#32-time-series-outlier-detection>
_3.3. Graph Outlier Detection <#33-graph-outlier-detection>
_3.4. Real-time Elasticsearch <#34-real-time-elasticsearch>
_3.5. Datasets <#35-datasets>
_4. Papers <#4-papers>
_
4.1. Overview & Survey Papers <#41-overview--survey-papers>
_4.2. Key Algorithms <#42-key-algorithms>
_4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>
_4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>
_4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>
_4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>
_4.7. Outlier Ensembles <#47-outlier-ensembles>
_4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>
_4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>
_4.10. Interpretability <#410-interpretability>
_4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>
_4.12. Active Anomaly Detection <#412-active-anomaly-detection>
_4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>
_4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>
_4.15. Outlier Detection Applications <#415-outlier-detection-applications>
_4.16. Automated Outlier Detection <#416-automated-outlier-detection>
_4.17. Machine Learning Systems for Outlier Detection <#417-machine-learning-systems-for-outlier-detection>
_4.18. Fairness and Bias in Outlier Detection <#418-fairness-and-bias-in-outlier-detection>
_4.19. Isolation-based Methods <#419-isolation-based-methods>
_4.20. Emerging and Interesting Topics <#420-emerging-and-interesting-topics>
_5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>
_
5.1. Conferences & Workshops <#51-conferences--workshops>
_5.2. Journals <#52-journals>
_1.1. Books ^^^^^^^^^^
Outlier Analysis <https://link.springer.com/book/10.1007/978-3-319-47578-3>
_
by Charu Aggarwal: Classical text book covering most of the outlier analysis techniques.
A must-read for people in the field of outlier detection. [Preview.pdf] <http://charuaggarwal.net/outlierbook.pdf>
_
Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>
_
by Charu Aggarwal and Saket Sathe: Great intro book for ensemble learning in outlier analysis.
Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>
_
by Jiawei Han and Micheline Kamber and Jian Pei: Chapter 12 discusses outlier detection with many key points. [Google Search] <https://www.google.ca/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>
_
1.2. Tutorials ^^^^^^^^^^^^^^
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
Tutorial Title Venue Year Ref Materials
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
Data mining for anomaly detection PKDD 2008 [#Lazarevic2008Data]_ [Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>
_
Outlier detection techniques ACM SIGKDD 2010 [#Kriegel2010Outlier]_ [PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>
_
Anomaly Detection: A Tutorial ICDM 2011 [#Chawla2011Anomaly]_ [PDF] <http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf>
_
Anomaly Detection in Networks KDD 2017 [#Mendiratta2017Anomaly]_ [Page] <https://veena-mendiratta.blog/tutorial-anomaly-detection-in-networks/>
_
Which Outlier Detector Should I use? ICDM 2018 [#Ting2018Which]_ [PDF] <https://ieeexplore.ieee.org/document/8594824>
_
Deep Learning for Anomaly Detection KDD 2020 [#Wang2020Deep]_ [HTML] <https://sites.google.com/view/kdd2020deepeye/home>
, [Video] <https://www.youtube.com/watch?v=Fn0qDbKL3UI&list=PLn0nrSd4xjja7AD3aY9Jxmr820gx59EQC&index=66>
Deep Learning for Anomaly Detection WSDM 2021 [#Pang2021Deep]_ [HTML] <https://sites.google.com/site/gspangsite/wsdm21_tutorial>
_
Toward Explainable Deep Anomaly Detection KDD 2021 [#Pang2021Toward]_ [HTML] <https://sites.google.com/site/gspangsite/kdd21_tutorial>
_
Recent Advances in Anomaly Detection CVPR 2023 [#Pang2023recent]_ [HTML] <https://sites.google.com/view/cvpr2023-tutorial-on-ad/>
, [Video] <https://www.youtube.com/watch?v=dXxrzWeybBo&feature=youtu.be>
Trustworthy Anomaly Detection SDM 2024 [#Yuan2024Trustworthy]_ [HTML] <https://yuan.shuhan.org/talks/SDM24/>
_
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
1.3. Benchmarks ^^^^^^^^^^^^^^^
News: We just released a 36-page, the most comprehensive anomaly detection benchmark paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/22-preprint-adbench.pdf>
.
The fully open-sourced ADBench <https://github.com/Minqi824/ADBench>
compares 30 anomaly detection algorithms on 55 benchmark datasets.
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Data Types Paper Title Venue Year Ref Materials
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Time-series Revisiting Time Series Outlier Detection: Definitions and Benchmarks NeurIPS 2021 [#Lai2021Revisiting]_ [PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>
, [Code] <https://github.com/datamllab/tods/tree/benchmark>
Graph Benchmarking Node Outlier Detection on Graphs NeurIPS 2022 [#Liu2022Benchmarking]_ [PDF] <https://arxiv.org/abs/2206.10071>
, [Code] <https://github.com/pygod-team/pygod/tree/main/benchmark>
Graph GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection NeurIPS 2023 [#Tang2023GADBench]_ [PDF] <https://arxiv.org/abs/2306.12251>
, [Code] <https://github.com/squareRoot3/GADBench>
Tabular ADBench: Anomaly Detection Benchmark NeurIPS 2022 [#Han2022Adbench]_ [PDF] <https://arxiv.org/abs/2206.09426>
, [Code] <https://github.com/Minqi824/ADBench>
Tabular ADGym: Design Choices for Deep Anomaly Detection NeurIPS 2023 [#Jiang2023adgym]_ [PDF] <https://arxiv.org/abs/2309.15376>
, [Code] <https://github.com/Minqi824/ADGym>
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Coursera Introduction to Anomaly Detection (by IBM)\ :
[See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>
_
Get started with the Anomaly Detection API (by IBM)\ :
[See Website] <https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/>
_
Practical Anomaly Detection by appliedAI Institute:
[See Website] <https://transferlab.ai/trainings/practical-anomaly-detection/>
, [See Video] <https://www.youtube.com/watch?v=sEoMIDARpJ0&list=PLz6xKPm1Bnd6cDDgct3MDhNWJuPXzsmyW>
, [See GitHub] <https://github.com/aai-institute/tfl-training-practical-anomaly-detection>
_
Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic\ :
[See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>
_
Coursera Machine Learning by Andrew Ng also partly covers the topic\ :
Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>
_Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>
_Udemy Outlier Detection Algorithms in Data Mining and Data Science\ :
[See Video] <https://www.udemy.com/outlier-detection-techniques/>
_
Stanford Data Mining for Cyber Security also covers part of anomaly detection techniques\ :
[See Video] <http://web.stanford.edu/class/cs259d/>
_
3.1. Multivariate Data ^^^^^^^^^^^^^^^^^^^^^^
[Python] Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>
_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.
[Python, GPU] TOD: Tensor-based Outlier Detection (PyTOD) <https://github.com/yzhao062/pytod>
_: A general GPU-accelerated framework for outlier detection.
[Python] Python Streaming Anomaly Detection (PySAD) <https://github.com/selimfirat/pysad>
_\ : PySAD is a streaming anomaly detection framework in Python, which provides a complete set of tools for anomaly detection experiments. It currently contains more than 15 online anomaly detection algorithms and 2 different methods to integrate PyOD detectors to the streaming setting.
[Python] Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>
_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.
[Python] Scalable Unsupervised Outlier Detection (SUOD) <https://github.com/yzhao062/suod>
_\ : SUOD (Scalable Unsupervised Outlier Detection) is an acceleration framework for large-scale unsupervised outlier detector training and prediction, on top of PyOD.
[Julia] OutlierDetection.jl <https://github.com/OutlierDetectionJL/OutlierDetection.jl>
_\ : OutlierDetection.jl is a Julia toolkit for detecting outlying objects, also known as anomalies.
[Java] ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>
_\ :
ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection.
[Java] RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>
_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.
[R] CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>
_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.
[R] outliers package <https://cran.r-project.org/web/packages/outliers/index.html>
_\ : A collection of some tests commonly used for identifying outliers in R.
[Matlab] Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>
_\ : A collection of popular outlier detection algorithms in Matlab.
3.2. Time Series Outlier Detection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[Python] TODS <https://github.com/datamllab/tods>
_\ : TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.
[Python] skyline <https://github.com/earthgecko/skyline>
_\ : Skyline is a near real time anomaly detection system.
[Python] banpei <https://github.com/tsurubee/banpei>
_\ : Banpei is a Python package of the anomaly detection.
[Python] telemanom <https://github.com/khundman/telemanom>
_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.
[Python] `DeepADoTS
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端 操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
用于可扩展和多功能 3D 生成的结构化 3D 潜在表示
TRELLIS 是一个专注于 3D 生成的项目,它利用结构化 3D 潜在表示技术,实现了可扩展且多功能的 3D 生成。项目提供了多种 3D 生成的方法和工具,包括文本到 3D、图像到 3D 等,并且支持多种输出格式,如 3D 高斯、辐射场和网格等。通过 TRELLIS,用户可以根据文本描述或图像输入快速生成高质量的 3D 资产,适用于游戏开发、动画制作、虚拟现实等多个领域。
10 节课教你开启构建 AI 代理所需的一切知识
AI Agents for Beginners 是一个专为初学者打造的课程项目,提供 10 节课程,涵盖构建 AI 代理的必备知识,支持多种语言,包含规划设计、工具使用、多代理等丰富内容,助您快速入门 AI 代理领域。
AI Excel全自动制表工具
AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。
基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。
UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。
开源且先进的大规模视频生成模型项目
Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。
全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表
爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和 报告质量。
一款强大的视觉语言模型,支持图像和视频输入
Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。