Project Icon

anomaly-detection-resources

异常检测领域的综合学习资源库

本项目汇集了异常检测领域的全面学习资源,包括书籍、论文、课程、数据集和工具库。涵盖多变量数据、时间序列和图网络等多种异常检测类型,并提供关键算法、高维数据和集成方法等研究方向的资料。同时列出重要会议和期刊,为异常检测研究者和实践者提供了宝贵的资源库。

Anomaly Detection Learning Resources

.. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers :alt: GitHub stars

.. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/network :alt: GitHub forks

.. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE :alt: License

.. image:: https://awesome.re/badge-flat2.svg :target: https://awesome.re/badge-flat2.svg :alt: Awesome

.. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink :target: https://github.com/Minqi824/ADBench :alt: Benchmark


Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>_ (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify outlying objects that are deviant from the general data distribution. Outlier detection has been proven critical in many fields, such as credit card fraud analytics, network intrusion detection, and mechanical unit defect detection.

This repository collects:

#. Books & Academic Papers #. Online Courses and Videos #. Outlier Datasets #. Open-source and Commercial Libraries/Toolkits #. Key Conferences & Journals

More items will be added to the repository. Please feel free to suggest other key resources by opening an issue report, submitting a pull request, or dropping me an email @ (yzhao010@usc.edu). Enjoy reading!

BTW, you may find my [GitHub] <https://github.com/yzhao062>_ and [outlier detection papers] <https://scholar.google.com/citations?user=zoGDYsoAAAAJ&hl=en>_ useful, especially PyOD library <https://github.com/yzhao062/pyod>_ and ADBench benchmark <https://github.com/Minqi824/ADBench>_.


Table of Contents

  • 1. Books & Tutorials & Benchmarks <#1-books--tutorials--benchmarks>_

    • 1.1. Books <#11-books>_
    • 1.2. Tutorials <#12-tutorials>_
    • 1.3. Benchmarks <#13-benchmarks>_
  • 2. Courses/Seminars/Videos <#2-coursesseminarsvideos>_

  • 3. Toolbox & Datasets <#3-toolbox--datasets>_

    • 3.1. Multivariate data outlier detection <#31-multivariate-data>_
    • 3.2. Time series outlier detection <#32-time-series-outlier-detection>_
    • 3.3. Graph Outlier Detection <#33-graph-outlier-detection>_
    • 3.4. Real-time Elasticsearch <#34-real-time-elasticsearch>_
    • 3.5. Datasets <#35-datasets>_
  • 4. Papers <#4-papers>_

    • 4.1. Overview & Survey Papers <#41-overview--survey-papers>_
    • 4.2. Key Algorithms <#42-key-algorithms>_
    • 4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>_
    • 4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>_
    • 4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>_
    • 4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>_
    • 4.7. Outlier Ensembles <#47-outlier-ensembles>_
    • 4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>_
    • 4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>_
    • 4.10. Interpretability <#410-interpretability>_
    • 4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>_
    • 4.12. Active Anomaly Detection <#412-active-anomaly-detection>_
    • 4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>_
    • 4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>_
    • 4.15. Outlier Detection Applications <#415-outlier-detection-applications>_
    • 4.16. Automated Outlier Detection <#416-automated-outlier-detection>_
    • 4.17. Machine Learning Systems for Outlier Detection <#417-machine-learning-systems-for-outlier-detection>_
    • 4.18. Fairness and Bias in Outlier Detection <#418-fairness-and-bias-in-outlier-detection>_
    • 4.19. Isolation-based Methods <#419-isolation-based-methods>_
    • 4.20. Emerging and Interesting Topics <#420-emerging-and-interesting-topics>_
  • 5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>_

    • 5.1. Conferences & Workshops <#51-conferences--workshops>_
    • 5.2. Journals <#52-journals>_

  1. Books & Tutorials & Benchmarks

1.1. Books ^^^^^^^^^^

Outlier Analysis <https://link.springer.com/book/10.1007/978-3-319-47578-3>_ by Charu Aggarwal: Classical text book covering most of the outlier analysis techniques. A must-read for people in the field of outlier detection. [Preview.pdf] <http://charuaggarwal.net/outlierbook.pdf>_

Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>_ by Charu Aggarwal and Saket Sathe: Great intro book for ensemble learning in outlier analysis.

Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>_ by Jiawei Han and Micheline Kamber and Jian Pei: Chapter 12 discusses outlier detection with many key points. [Google Search] <https://www.google.ca/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>_

1.2. Tutorials ^^^^^^^^^^^^^^

===================================================== ============================================ ===== ============================ ========================================================================================================================================================================== Tutorial Title Venue Year Ref Materials ===================================================== ============================================ ===== ============================ ========================================================================================================================================================================== Data mining for anomaly detection PKDD 2008 [#Lazarevic2008Data]_ [Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>_ Outlier detection techniques ACM SIGKDD 2010 [#Kriegel2010Outlier]_ [PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>_ Anomaly Detection: A Tutorial ICDM 2011 [#Chawla2011Anomaly]_ [PDF] <http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf>_ Anomaly Detection in Networks KDD 2017 [#Mendiratta2017Anomaly]_ [Page] <https://veena-mendiratta.blog/tutorial-anomaly-detection-in-networks/>_ Which Outlier Detector Should I use? ICDM 2018 [#Ting2018Which]_ [PDF] <https://ieeexplore.ieee.org/document/8594824>_ Deep Learning for Anomaly Detection KDD 2020 [#Wang2020Deep]_ [HTML] <https://sites.google.com/view/kdd2020deepeye/home>, [Video] <https://www.youtube.com/watch?v=Fn0qDbKL3UI&list=PLn0nrSd4xjja7AD3aY9Jxmr820gx59EQC&index=66> Deep Learning for Anomaly Detection WSDM 2021 [#Pang2021Deep]_ [HTML] <https://sites.google.com/site/gspangsite/wsdm21_tutorial>_ Toward Explainable Deep Anomaly Detection KDD 2021 [#Pang2021Toward]_ [HTML] <https://sites.google.com/site/gspangsite/kdd21_tutorial>_ Recent Advances in Anomaly Detection CVPR 2023 [#Pang2023recent]_ [HTML] <https://sites.google.com/view/cvpr2023-tutorial-on-ad/>, [Video] <https://www.youtube.com/watch?v=dXxrzWeybBo&feature=youtu.be> Trustworthy Anomaly Detection SDM 2024 [#Yuan2024Trustworthy]_ [HTML] <https://yuan.shuhan.org/talks/SDM24/>_ ===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================

1.3. Benchmarks ^^^^^^^^^^^^^^^

News: We just released a 36-page, the most comprehensive anomaly detection benchmark paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/22-preprint-adbench.pdf>. The fully open-sourced ADBench <https://github.com/Minqi824/ADBench> compares 30 anomaly detection algorithms on 55 benchmark datasets.

============= ================================================================================================= ============================ ===== ============================ ========================================================================================================================================================================== Data Types Paper Title Venue Year Ref Materials ============= ================================================================================================= ============================ ===== ============================ ========================================================================================================================================================================== Time-series Revisiting Time Series Outlier Detection: Definitions and Benchmarks NeurIPS 2021 [#Lai2021Revisiting]_ [PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>, [Code] <https://github.com/datamllab/tods/tree/benchmark> Graph Benchmarking Node Outlier Detection on Graphs NeurIPS 2022 [#Liu2022Benchmarking]_ [PDF] <https://arxiv.org/abs/2206.10071>, [Code] <https://github.com/pygod-team/pygod/tree/main/benchmark> Graph GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection NeurIPS 2023 [#Tang2023GADBench]_ [PDF] <https://arxiv.org/abs/2306.12251>, [Code] <https://github.com/squareRoot3/GADBench> Tabular ADBench: Anomaly Detection Benchmark NeurIPS 2022 [#Han2022Adbench]_ [PDF] <https://arxiv.org/abs/2206.09426>, [Code] <https://github.com/Minqi824/ADBench> Tabular ADGym: Design Choices for Deep Anomaly Detection NeurIPS 2023 [#Jiang2023adgym]_ [PDF] <https://arxiv.org/abs/2309.15376>, [Code] <https://github.com/Minqi824/ADGym> ============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================


  1. Courses/Seminars/Videos

Coursera Introduction to Anomaly Detection (by IBM)\ : [See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>_

Get started with the Anomaly Detection API (by IBM)\ : [See Website] <https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/>_

Practical Anomaly Detection by appliedAI Institute: [See Website] <https://transferlab.ai/trainings/practical-anomaly-detection/>, [See Video] <https://www.youtube.com/watch?v=sEoMIDARpJ0&list=PLz6xKPm1Bnd6cDDgct3MDhNWJuPXzsmyW>, [See GitHub] <https://github.com/aai-institute/tfl-training-practical-anomaly-detection>_

Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic\ : [See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>_

Coursera Machine Learning by Andrew Ng also partly covers the topic\ :

  • Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>_
  • Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>_

Udemy Outlier Detection Algorithms in Data Mining and Data Science\ : [See Video] <https://www.udemy.com/outlier-detection-techniques/>_

Stanford Data Mining for Cyber Security also covers part of anomaly detection techniques\ : [See Video] <http://web.stanford.edu/class/cs259d/>_


  1. Toolbox & Datasets

3.1. Multivariate Data ^^^^^^^^^^^^^^^^^^^^^^

[Python] Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.

[Python, GPU] TOD: Tensor-based Outlier Detection (PyTOD) <https://github.com/yzhao062/pytod>_: A general GPU-accelerated framework for outlier detection.

[Python] Python Streaming Anomaly Detection (PySAD) <https://github.com/selimfirat/pysad>_\ : PySAD is a streaming anomaly detection framework in Python, which provides a complete set of tools for anomaly detection experiments. It currently contains more than 15 online anomaly detection algorithms and 2 different methods to integrate PyOD detectors to the streaming setting.

[Python] Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.

[Python] Scalable Unsupervised Outlier Detection (SUOD) <https://github.com/yzhao062/suod>_\ : SUOD (Scalable Unsupervised Outlier Detection) is an acceleration framework for large-scale unsupervised outlier detector training and prediction, on top of PyOD.

[Julia] OutlierDetection.jl <https://github.com/OutlierDetectionJL/OutlierDetection.jl>_\ : OutlierDetection.jl is a Julia toolkit for detecting outlying objects, also known as anomalies.

[Java] ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>_\ : ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection.

[Java] RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.

[R] CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.

[R] outliers package <https://cran.r-project.org/web/packages/outliers/index.html>_\ : A collection of some tests commonly used for identifying outliers in R.

[Matlab] Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>_\ : A collection of popular outlier detection algorithms in Matlab.

3.2. Time Series Outlier Detection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

[Python] TODS <https://github.com/datamllab/tods>_\ : TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.

[Python] skyline <https://github.com/earthgecko/skyline>_\ : Skyline is a near real time anomaly detection system.

[Python] banpei <https://github.com/tsurubee/banpei>_\ : Banpei is a Python package of the anomaly detection.

[Python] telemanom <https://github.com/khundman/telemanom>_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.

[Python] `DeepADoTS

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号