Anomaly Detection Learning Resources
.. image:: https://img.shields.io/github/stars/yzhao062/anomaly-detection-resources.svg :target: https://github.com/yzhao062/anomaly-detection-resources/stargazers :alt: GitHub stars
.. image:: https://img.shields.io/github/forks/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/network :alt: GitHub forks
.. image:: https://img.shields.io/github/license/yzhao062/anomaly-detection-resources.svg?color=blue :target: https://github.com/yzhao062/anomaly-detection-resources/blob/master/LICENSE :alt: License
.. image:: https://awesome.re/badge-flat2.svg :target: https://awesome.re/badge-flat2.svg :alt: Awesome
.. image:: https://img.shields.io/badge/ADBench-benchmark_results-pink :target: https://github.com/Minqi824/ADBench :alt: Benchmark
Outlier Detection <https://en.wikipedia.org/wiki/Anomaly_detection>
_
(also known as Anomaly Detection) is an exciting yet challenging field,
which aims to identify outlying objects that are deviant from the general data distribution.
Outlier detection has been proven critical in many fields, such as credit card
fraud analytics, network intrusion detection, and mechanical unit defect detection.
This repository collects:
#. Books & Academic Papers #. Online Courses and Videos #. Outlier Datasets #. Open-source and Commercial Libraries/Toolkits #. Key Conferences & Journals
More items will be added to the repository. Please feel free to suggest other key resources by opening an issue report, submitting a pull request, or dropping me an email @ (yzhao010@usc.edu). Enjoy reading!
BTW, you may find my [GitHub] <https://github.com/yzhao062>
_ and
[outlier detection papers] <https://scholar.google.com/citations?user=zoGDYsoAAAAJ&hl=en>
_ useful,
especially PyOD library <https://github.com/yzhao062/pyod>
_ and ADBench benchmark <https://github.com/Minqi824/ADBench>
_.
Table of Contents
-
1. Books & Tutorials & Benchmarks <#1-books--tutorials--benchmarks>
_1.1. Books <#11-books>
_1.2. Tutorials <#12-tutorials>
_1.3. Benchmarks <#13-benchmarks>
_
-
2. Courses/Seminars/Videos <#2-coursesseminarsvideos>
_ -
3. Toolbox & Datasets <#3-toolbox--datasets>
_3.1. Multivariate data outlier detection <#31-multivariate-data>
_3.2. Time series outlier detection <#32-time-series-outlier-detection>
_3.3. Graph Outlier Detection <#33-graph-outlier-detection>
_3.4. Real-time Elasticsearch <#34-real-time-elasticsearch>
_3.5. Datasets <#35-datasets>
_
-
4. Papers <#4-papers>
_4.1. Overview & Survey Papers <#41-overview--survey-papers>
_4.2. Key Algorithms <#42-key-algorithms>
_4.3. Graph & Network Outlier Detection <#43-graph--network-outlier-detection>
_4.4. Time Series Outlier Detection <#44-time-series-outlier-detection>
_4.5. Feature Selection in Outlier Detection <#45-feature-selection-in-outlier-detection>
_4.6. High-dimensional & Subspace Outliers <#46-high-dimensional--subspace-outliers>
_4.7. Outlier Ensembles <#47-outlier-ensembles>
_4.8. Outlier Detection in Evolving Data <#48-outlier-detection-in-evolving-data>
_4.9. Representation Learning in Outlier Detection <#49-representation-learning-in-outlier-detection>
_4.10. Interpretability <#410-interpretability>
_4.11. Outlier Detection with Neural Networks <#411-outlier-detection-with-neural-networks>
_4.12. Active Anomaly Detection <#412-active-anomaly-detection>
_4.13. Interactive Outlier Detection <#413-interactive-outlier-detection>
_4.14. Outlier Detection in Other fields <#414-outlier-detection-in-other-fields>
_4.15. Outlier Detection Applications <#415-outlier-detection-applications>
_4.16. Automated Outlier Detection <#416-automated-outlier-detection>
_4.17. Machine Learning Systems for Outlier Detection <#417-machine-learning-systems-for-outlier-detection>
_4.18. Fairness and Bias in Outlier Detection <#418-fairness-and-bias-in-outlier-detection>
_4.19. Isolation-based Methods <#419-isolation-based-methods>
_4.20. Emerging and Interesting Topics <#420-emerging-and-interesting-topics>
_
-
5. Key Conferences/Workshops/Journals <#5-key-conferencesworkshopsjournals>
_5.1. Conferences & Workshops <#51-conferences--workshops>
_5.2. Journals <#52-journals>
_
- Books & Tutorials & Benchmarks
1.1. Books ^^^^^^^^^^
Outlier Analysis <https://link.springer.com/book/10.1007/978-3-319-47578-3>
_
by Charu Aggarwal: Classical text book covering most of the outlier analysis techniques.
A must-read for people in the field of outlier detection. [Preview.pdf] <http://charuaggarwal.net/outlierbook.pdf>
_
Outlier Ensembles: An Introduction <https://www.springer.com/gp/book/9783319547640>
_
by Charu Aggarwal and Saket Sathe: Great intro book for ensemble learning in outlier analysis.
Data Mining: Concepts and Techniques (3rd) <https://www.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1>
_
by Jiawei Han and Micheline Kamber and Jian Pei: Chapter 12 discusses outlier detection with many key points. [Google Search] <https://www.google.ca/search?&q=data+mining+jiawei+han&oq=data+ming+jiawei>
_
1.2. Tutorials ^^^^^^^^^^^^^^
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
Tutorial Title Venue Year Ref Materials
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
Data mining for anomaly detection PKDD 2008 [#Lazarevic2008Data]_ [Video] <http://videolectures.net/ecmlpkdd08_lazarevic_dmfa/>
_
Outlier detection techniques ACM SIGKDD 2010 [#Kriegel2010Outlier]_ [PDF] <https://imada.sdu.dk/~zimek/publications/KDD2010/kdd10-outlier-tutorial.pdf>
_
Anomaly Detection: A Tutorial ICDM 2011 [#Chawla2011Anomaly]_ [PDF] <http://webdocs.cs.ualberta.ca/~icdm2011/downloads/ICDM2011_anomaly_detection_tutorial.pdf>
_
Anomaly Detection in Networks KDD 2017 [#Mendiratta2017Anomaly]_ [Page] <https://veena-mendiratta.blog/tutorial-anomaly-detection-in-networks/>
_
Which Outlier Detector Should I use? ICDM 2018 [#Ting2018Which]_ [PDF] <https://ieeexplore.ieee.org/document/8594824>
_
Deep Learning for Anomaly Detection KDD 2020 [#Wang2020Deep]_ [HTML] <https://sites.google.com/view/kdd2020deepeye/home>
, [Video] <https://www.youtube.com/watch?v=Fn0qDbKL3UI&list=PLn0nrSd4xjja7AD3aY9Jxmr820gx59EQC&index=66>
Deep Learning for Anomaly Detection WSDM 2021 [#Pang2021Deep]_ [HTML] <https://sites.google.com/site/gspangsite/wsdm21_tutorial>
_
Toward Explainable Deep Anomaly Detection KDD 2021 [#Pang2021Toward]_ [HTML] <https://sites.google.com/site/gspangsite/kdd21_tutorial>
_
Recent Advances in Anomaly Detection CVPR 2023 [#Pang2023recent]_ [HTML] <https://sites.google.com/view/cvpr2023-tutorial-on-ad/>
, [Video] <https://www.youtube.com/watch?v=dXxrzWeybBo&feature=youtu.be>
Trustworthy Anomaly Detection SDM 2024 [#Yuan2024Trustworthy]_ [HTML] <https://yuan.shuhan.org/talks/SDM24/>
_
===================================================== ============================================ ===== ============================ ==========================================================================================================================================================================
1.3. Benchmarks ^^^^^^^^^^^^^^^
News: We just released a 36-page, the most comprehensive anomaly detection benchmark paper <https://www.andrew.cmu.edu/user/yuezhao2/papers/22-preprint-adbench.pdf>
.
The fully open-sourced ADBench <https://github.com/Minqi824/ADBench>
compares 30 anomaly detection algorithms on 55 benchmark datasets.
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Data Types Paper Title Venue Year Ref Materials
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
Time-series Revisiting Time Series Outlier Detection: Definitions and Benchmarks NeurIPS 2021 [#Lai2021Revisiting]_ [PDF] <https://openreview.net/pdf?id=r8IvOsnHchr>
, [Code] <https://github.com/datamllab/tods/tree/benchmark>
Graph Benchmarking Node Outlier Detection on Graphs NeurIPS 2022 [#Liu2022Benchmarking]_ [PDF] <https://arxiv.org/abs/2206.10071>
, [Code] <https://github.com/pygod-team/pygod/tree/main/benchmark>
Graph GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection NeurIPS 2023 [#Tang2023GADBench]_ [PDF] <https://arxiv.org/abs/2306.12251>
, [Code] <https://github.com/squareRoot3/GADBench>
Tabular ADBench: Anomaly Detection Benchmark NeurIPS 2022 [#Han2022Adbench]_ [PDF] <https://arxiv.org/abs/2206.09426>
, [Code] <https://github.com/Minqi824/ADBench>
Tabular ADGym: Design Choices for Deep Anomaly Detection NeurIPS 2023 [#Jiang2023adgym]_ [PDF] <https://arxiv.org/abs/2309.15376>
, [Code] <https://github.com/Minqi824/ADGym>
============= ================================================================================================= ============================ ===== ============================ ==========================================================================================================================================================================
- Courses/Seminars/Videos
Coursera Introduction to Anomaly Detection (by IBM)\ :
[See Video] <https://www.coursera.org/learn/ai/lecture/ASPv0/introduction-to-anomaly-detection>
_
Get started with the Anomaly Detection API (by IBM)\ :
[See Website] <https://developer.ibm.com/learningpaths/get-started-anomaly-detection-api/>
_
Practical Anomaly Detection by appliedAI Institute:
[See Website] <https://transferlab.ai/trainings/practical-anomaly-detection/>
, [See Video] <https://www.youtube.com/watch?v=sEoMIDARpJ0&list=PLz6xKPm1Bnd6cDDgct3MDhNWJuPXzsmyW>
, [See GitHub] <https://github.com/aai-institute/tfl-training-practical-anomaly-detection>
_
Coursera Real-Time Cyber Threat Detection and Mitigation partly covers the topic\ :
[See Video] <https://www.coursera.org/learn/real-time-cyber-threat-detection>
_
Coursera Machine Learning by Andrew Ng also partly covers the topic\ :
Anomaly Detection vs. Supervised Learning <https://www.coursera.org/learn/machine-learning/lecture/Rkc5x/anomaly-detection-vs-supervised-learning>
_Developing and Evaluating an Anomaly Detection System <https://www.coursera.org/learn/machine-learning/lecture/Mwrni/developing-and-evaluating-an-anomaly-detection-system>
_
Udemy Outlier Detection Algorithms in Data Mining and Data Science\ :
[See Video] <https://www.udemy.com/outlier-detection-techniques/>
_
Stanford Data Mining for Cyber Security also covers part of anomaly detection techniques\ :
[See Video] <http://web.stanford.edu/class/cs259d/>
_
- Toolbox & Datasets
3.1. Multivariate Data ^^^^^^^^^^^^^^^^^^^^^^
[Python] Python Outlier Detection (PyOD) <https://github.com/yzhao062/pyod>
_\ : PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. It contains more than 20 detection algorithms, including emerging deep learning models and outlier ensembles.
[Python, GPU] TOD: Tensor-based Outlier Detection (PyTOD) <https://github.com/yzhao062/pytod>
_: A general GPU-accelerated framework for outlier detection.
[Python] Python Streaming Anomaly Detection (PySAD) <https://github.com/selimfirat/pysad>
_\ : PySAD is a streaming anomaly detection framework in Python, which provides a complete set of tools for anomaly detection experiments. It currently contains more than 15 online anomaly detection algorithms and 2 different methods to integrate PyOD detectors to the streaming setting.
[Python] Scikit-learn Novelty and Outlier Detection <http://scikit-learn.org/stable/modules/outlier_detection.html>
_. It supports some popular algorithms like LOF, Isolation Forest, and One-class SVM.
[Python] Scalable Unsupervised Outlier Detection (SUOD) <https://github.com/yzhao062/suod>
_\ : SUOD (Scalable Unsupervised Outlier Detection) is an acceleration framework for large-scale unsupervised outlier detector training and prediction, on top of PyOD.
[Julia] OutlierDetection.jl <https://github.com/OutlierDetectionJL/OutlierDetection.jl>
_\ : OutlierDetection.jl is a Julia toolkit for detecting outlying objects, also known as anomalies.
[Java] ELKI: Environment for Developing KDD-Applications Supported by Index-Structures <https://elki-project.github.io/>
_\ :
ELKI is an open source (AGPLv3) data mining software written in Java. The focus of ELKI is research in algorithms, with an emphasis on unsupervised methods in cluster analysis and outlier detection.
[Java] RapidMiner Anomaly Detection Extension <https://github.com/Markus-Go/rapidminer-anomalydetection>
_\ : The Anomaly Detection Extension for RapidMiner comprises the most well know unsupervised anomaly detection algorithms, assigning individual anomaly scores to data rows of example sets. It allows you to find data, which is significantly different from the normal, without the need for the data being labeled.
[R] CRAN Task View: Anomaly Detection with R <https://github.com/pridiltal/ctv-AnomalyDetection>
_\ : This CRAN task view contains a list of packages that can be used for anomaly detection with R.
[R] outliers package <https://cran.r-project.org/web/packages/outliers/index.html>
_\ : A collection of some tests commonly used for identifying outliers in R.
[Matlab] Anomaly Detection Toolbox - Beta <http://dsmi-lab-ntust.github.io/AnomalyDetectionToolbox/>
_\ : A collection of popular outlier detection algorithms in Matlab.
3.2. Time Series Outlier Detection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[Python] TODS <https://github.com/datamllab/tods>
_\ : TODS is a full-stack automated machine learning system for outlier detection on multivariate time-series data.
[Python] skyline <https://github.com/earthgecko/skyline>
_\ : Skyline is a near real time anomaly detection system.
[Python] banpei <https://github.com/tsurubee/banpei>
_\ : Banpei is a Python package of the anomaly detection.
[Python] telemanom <https://github.com/khundman/telemanom>
_\ : A framework for using LSTMs to detect anomalies in multivariate time series data.
[Python] `DeepADoTS
编辑推荐精选


Manus
全面超越基准的 AI Agent助手
Manus 是一款通用人工智能代理平台,能够将您的创意和想法迅速转化为实际成果。无论是定制旅行规划、深入的数据分析,还是教育支持与商业决策,Manus 都能高效整合信息,提供精准解决方案。它以直观的交互体验和领先的技术,为用户开启了一个智慧驱动、轻松高效的新时代,让每个灵感都能得到完美落地。


飞书知识问答
飞书官方推出的AI知识库 上传word pdf即可部署AI私有知识库
基于DeepSeek R1大模型构建的知识管理系统,支持PDF、Word、PPT等常见文档格式解析,实现云端与本地数据的双向同步。系统具备实时网络检索能力,可自动关联外部信息源,通过语义理解技术处理结构化与非结构化数据。免费版本提供基础知识库搭建功能,适用于企业文档管理和个人学习资料整理场景。


Trae
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

酷表ChatExcel
大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


DeepEP
DeepSeek开源的专家并行通信优化框架
DeepEP是一个专为大规模分布式计算设计的通信库,重点解决专家并行模式中的通信瓶颈问题。其核心架构采用分层拓扑感知技术,能够自动识别节点间物理连接关系,优化数据传输路径。通过实现动态路由选择与负载均衡机制,系统在千卡级计算集群中维持稳定的低延迟特性,同时兼容主流深度学习框架的通信接口。


DeepSeek
全球领先开源大模型,高效智能助手
DeepSeek是一家幻方量化创办的专注于通用人工智能的中国科技公司,主攻大模型研发与应用。DeepSeek-R1是开源的推理模型,擅长处理复杂任务且可免费商用。


KnowS
AI医学搜索引擎 整合4000万+实时更新的全球医学文献
医学领域专用搜索引擎整合4000万+实时更新的全球医学文献,通过自主研发AI模型实现精准知识检索。系统每日更新指南、中英文文献及会议资料,搜索准确率较传统工具提升80%,同时将大模型幻觉率控制在8%以下。支持临床建议生成、文献深度解析、学术报告制作等全流程科研辅助,典型用户反馈显示每周可节省医疗工作者70%时间。


Windsurf Wave 3
Windsurf Editor推出第三次重大更新Wave 3
新增模型上下文协议支持与智能编辑功能。本次更新包含五项核心改进:支持接入MCP协议扩展工具生态,Tab键智能跳转提升编码效率,Turbo模式实现自动化终端操作,图片拖拽功能优化多模态交互,以及面向付费用户的个性化图标定制。系统同步集成DeepSeek、Gemini等新模型,并通过信用点数机制实现差异化的资源调配。


腾讯元宝
腾讯自研的混元大模型AI助手
腾讯元宝是腾讯基于自研的混元大模型推出的一款多功能AI应用,旨在通过人工智能技术提升用户在写作、绘画、翻译、编程、搜索、阅读总结等多个领域的工作与生活效率。


Grok3
埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型
Grok3 是由埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型,常被马斯克称为“地球上最聪明的 AI”。它不仅是在前代产品 Grok 1 和 Grok 2 基础上的一次飞跃,还在多个关键技术上实现了创新突破。
推荐工具精选
AI云服务特惠
懂AI专属折扣关注微信公众号
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号