Project Icon

KG-MM-Survey

知识图谱与多模态学习融合研究综述

本项目汇总了知识图谱与多模态学习融合研究的相关论文,主要包括知识图谱驱动的多模态学习(KG4MM)和多模态知识图谱(MM4KG)两个方向。KG4MM探讨知识图谱对多模态任务的支持,MM4KG研究多模态技术在知识图谱领域的应用。项目覆盖理解推理、分类、生成、检索等多种任务,提供了详细的文献列表和资源。这是一份系统全面的知识图谱与多模态学习交叉领域研究综述。

KG-MM-Survey

Awesome License: MIT

Task

🙌 This repository collects papers integrating Knowledge Graphs (KGs) and Multi-Modal Learning, focusing on research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm.

😎 Welcome to recommend missing papers through Adding Issues or Pull Requests.

👈 🔎 Roadmap

Roadmap

🔔 News

Todo:

    • Finish updating papers

📜 Content


🤖🌄 KG-driven Multi-modal Learning (KG4MM)

Understanding & Reasoning Tasks

👈 🔎 Pipeline

KG4MMR

Visual Question Answering

👈 🔎 Benchmarks

VQA

  • [arXiv 2024] Knowledge Condensation and Reasoning for Knowledge-based VQA.
  • [arXiv 2024] VCD: Knowledge Base Guided Visual Commonsense Discovery in Images.
  • [arXiv 2024] Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment.
  • [ACL 2024] Modality-Aware Integration with Large Language Models for Knowledge-based Visual Question Answering.
  • [arXiv 2024] II-MMR: Identifying and Improving Multi-modal Multi-hop Reasoning in Visual Question Answering.
  • [arXiv 2024] Knowledge Generation for Zero-shot Knowledge-based VQA.
  • [arXiv 2024] GeReA: Question-Aware Prompt Captions for Knowledge-based Visual Question Answering.
  • [arXiv 2024] Advancing Large Multi-modal Models with Explicit Chain-of-Reasoning and Visual Question Generation.
  • [AAAI 2024] BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining.
  • [arXiv 2024] Cross-modal Retrieval for Knowledge-based Visual Question Answering.
  • [TMM 2024] Learning to Supervise Knowledge Retrieval over a Tree Structure for Visual Question Answering.
  • [MTA 2024] Hierarchical Attention Networks for Fact-based Visual Question Answering.
  • [KAIS 2024] Knowledge enhancement and scene understanding for knowledge-based visual question answering.
  • [arXiv 2023] Multi-Clue Reasoning with Memory Augmentation for Knowledge-based Visual Question Answering.
  • [arXiv 2023] Open-Set Knowledge-Based Visual Question Answering with Inference Paths.
  • [arXiv 2023] Prompting Vision Language Model with Knowledge from Large Language Model for Knowledge-Based VQA.
  • [EMNLP 2023] Language Guided Visual Question Answering: Elevate Your Multimodal Language Model Using Knowledge-Enriched Prompts.
  • [EMNLP 2023] A Simple Baseline for Knowledge-Based Visual Question Answering.
  • [EMNLP 2023] MM-Reasoner: A Multi-Modal Knowledge-Aware Framework for Knowledge-Based Visual Question Answering.
  • [NeurIPS 2023] LoRA: A Logical Reasoning Augmented Dataset for Visual Question Answering.
  • [CVPR 2023] Prompting Large Language Models with Answer Heuristics for Knowledge-Based Visual Question Answering.
  • [EACL 2023] FVQA 2.0: Introducing Adversarial Samples into Fact-based Visual Question Answering.
  • [WACV 2023] VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge.
  • [ICASSP 2023] Outside Knowledge Visual Question Answering Version 2.0.
  • [ICME 2023] A Retriever-Reader Framework with Visual Entity Linking for Knowledge-Based Visual Question Answering.
  • [TIP 2023] Semantic-Aware Modular Capsule Routing for Visual Question Answering.
  • [ACM MM 2023] AI-VQA: Visual Question Answering based on Agent Interaction with Interpretability.
  • [SIGIR 2023] A Symmetric Dual Encoding Dense Retrieval Framework for Knowledge-Intensive Visual Question Answering.
  • [ICMR 2023] Explicit Knowledge Integration for Knowledge-Aware Visual Question Answering about Named Entities.
  • [TMM 2023] Resolving Zero-shot and Fact-based Visual Question Answering via Enhanced Fact Retrieval.
  • [ESA 2023] Image captioning for effective use of language models in knowledge-based visual question answering.
  • [EMNLP 2022] Retrieval Augmented Visual Question Answering with Outside Knowledge.
  • [EMNLP 2022] Entity-Focused Dense Passage Retrieval for Outside-Knowledge Visual Question Answering.
  • [IJCKG 2022] LaKo: Knowledge-driven Visual Question Answering via Late Knowledge-to-Text Injection.
  • [NeurIPS 2022] REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual Question Answering.
  • [CVPR 2022] MuKEA: Multimodal Knowledge Extraction and Accumulation for Knowledge-based Visual Question Answering.
  • [CVPR 2022] Transform-Retrieve-Generate: Natural Language-Centric Outside-Knowledge Visual Question Answering.
  • [ECCV 2022] A-OKVQA: A Benchmark for Visual Question Answering Using World Knowledge.
  • [ICCV 2022] VQA-GNN: Reasoning with Multimodal Semantic Graph for Visual Question Answering.
  • [AAAI 2022] Dynamic Key-Value Memory Enhanced Multi-Step Graph Reasoning for Knowledge-Based Visual Question Answering.
  • [AAAI 2022] An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA.
  • [ACM MM 2022] A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA.
  • [ACL 2022] Hypergraph Transformer: Weakly-Supervised Multi-hop Reasoning for Knowledge-based Visual Question Answering.
  • [WWW 2022] Improving and Diagnosing Knowledge-Based Visual Question Answering via Entity Enhanced Knowledge Injection.
  • [SITIS 2022] Multimodal Knowledge Reasoning for Enhanced Visual Question Answering.
  • [KBS 2022] Fact-based visual question answering via dual-process system.
  • [ISWC 2021] Zero-Shot Visual Question Answering Using Knowledge Graph.
  • [ISWC 2021] Graphhopper: Multi-hop Scene Graph Reasoning for Visual Question Answering.
  • [ACL 2021] In Factuality: Efficient Integration of Relevant Facts for Visual Question Answering.
  • [KDD 2021] Select, Substitute, Search: A New Benchmark for Knowledge-Augmented Visual Question Answering.
  • [CVPR 2021] KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain Knowledge-Based VQA.
  • [PR 2021] Knowledge base graph embedding module design for Visual question answering model.
  • [SIGIR 2021] Passage Retrieval for Outside-Knowledge Visual Question Answering.
  • [TNNLS 2021] Rich Visual Knowledge-Based Augmentation Network for Visual Question Answering.
  • [COLING 2020] Towards Knowledge-Augmented Visual Question Answering.
  • [arXiv 2020] Seeing is Knowing! Fact-based Visual Question Answering using Knowledge Graph Embeddings.
  • [ACM MM 2020] Boosting Visual Question Answering with Context-aware Knowledge Aggregation.
  • [EMNLP 2020] ConceptBert: Concept-Aware Representation for Visual Question Answering.
  • [PR 2020] Cross-modal knowledge reasoning for knowledge-based visual question answering.
  • [IJCAI 2020] Mucko: Multi-Layer Cross-Modal Knowledge Reasoning for Fact-based Visual Question Answering.
  • [AAAI 2020] KnowIT VQA: Answering Knowledge-Based Questions about Videos.
  • [AAAI 2019] KVQA: Knowledge-Aware Visual Question Answering.
  • [CVPR 2019] OK-VQA: Visual Question Answering Benchmark Requiring External Knowledge.
  • [NeurIPS 2018] Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering.
  • [ECCV 2018] Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering.
  • [CVPR 2018] Learning Visual Knowledge Memory Networks for Visual Question Answering.
  • [KDD 2018] R-VQA: Learning Visual Relation Facts with Semantic Attention for Visual Question
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号