KG-MM-Survey

KG-MM-Survey

知识图谱与多模态学习融合研究综述

本项目汇总了知识图谱与多模态学习融合研究的相关论文,主要包括知识图谱驱动的多模态学习(KG4MM)和多模态知识图谱(MM4KG)两个方向。KG4MM探讨知识图谱对多模态任务的支持,MM4KG研究多模态技术在知识图谱领域的应用。项目覆盖理解推理、分类、生成、检索等多种任务,提供了详细的文献列表和资源。这是一份系统全面的知识图谱与多模态学习交叉领域研究综述。

知识图谱多模态学习视觉问答知识融合深度学习Github开源项目

KG-MM-Survey

Awesome License: MIT

Task

🙌 This repository collects papers integrating Knowledge Graphs (KGs) and Multi-Modal Learning, focusing on research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm.

😎 Welcome to recommend missing papers through Adding Issues or Pull Requests.

<details> <summary>👈 🔎 Roadmap </summary>

Roadmap

</details>

🔔 News

Todo:

    • Finish updating papers

📜 Content


🤖🌄 KG-driven Multi-modal Learning (KG4MM)

Understanding & Reasoning Tasks

<details> <summary>👈 🔎 Pipeline </summary>

KG4MMR

</details>

Visual Question Answering

<details> <summary>👈 🔎 Benchmarks </summary>

VQA

</details>
  • [arXiv 2024] Knowledge Condensation and Reasoning for Knowledge-based VQA.
  • [arXiv 2024] VCD: Knowledge Base Guided Visual Commonsense Discovery in Images.
  • [arXiv 2024] Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment.
  • [ACL 2024] Modality-Aware Integration with Large Language Models for Knowledge-based Visual Question Answering.
  • [arXiv 2024] II-MMR: Identifying and Improving Multi-modal Multi-hop Reasoning in Visual Question Answering.
  • [arXiv 2024] Knowledge Generation for Zero-shot Knowledge-based VQA.
  • [arXiv 2024] GeReA: Question-Aware Prompt Captions for Knowledge-based Visual Question Answering.
  • [arXiv 2024] Advancing Large Multi-modal Models with Explicit Chain-of-Reasoning and Visual Question Generation.
  • [AAAI 2024] BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining.
  • [arXiv 2024] Cross-modal Retrieval for Knowledge-based Visual Question Answering.
  • [TMM 2024] Learning to Supervise Knowledge Retrieval over a Tree Structure for Visual Question Answering.
  • [MTA 2024] Hierarchical Attention Networks for Fact-based Visual Question Answering.
  • [KAIS 2024] Knowledge enhancement and scene understanding for knowledge-based visual question answering.
  • [arXiv 2023] Multi-Clue Reasoning with Memory Augmentation for Knowledge-based Visual Question Answering.
  • [arXiv 2023] Open-Set Knowledge-Based Visual Question Answering with Inference Paths.
  • [arXiv 2023] Prompting Vision Language Model with Knowledge from Large Language Model for Knowledge-Based VQA.
  • [EMNLP 2023] Language Guided Visual Question Answering: Elevate Your Multimodal Language Model Using Knowledge-Enriched Prompts.
  • [EMNLP 2023] A Simple Baseline for Knowledge-Based Visual Question Answering.
  • [EMNLP 2023] MM-Reasoner: A Multi-Modal Knowledge-Aware Framework for Knowledge-Based Visual Question Answering.
  • [NeurIPS 2023] LoRA: A Logical Reasoning Augmented Dataset for Visual Question Answering.
  • [CVPR 2023] Prompting Large Language Models with Answer Heuristics for Knowledge-Based Visual Question Answering.
  • [EACL 2023] FVQA 2.0: Introducing Adversarial Samples into Fact-based Visual Question Answering.
  • [WACV 2023] VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge.
  • [ICASSP 2023] Outside Knowledge Visual Question Answering Version 2.0.
  • [ICME 2023] A Retriever-Reader Framework with Visual Entity Linking for Knowledge-Based Visual Question Answering.
  • [TIP 2023] Semantic-Aware Modular Capsule Routing for Visual Question Answering.
  • [ACM MM 2023] AI-VQA: Visual Question Answering based on Agent Interaction with Interpretability.
  • [SIGIR 2023] A Symmetric Dual Encoding Dense Retrieval Framework for Knowledge-Intensive Visual Question Answering.
  • [ICMR 2023] Explicit Knowledge Integration for Knowledge-Aware Visual Question Answering about Named Entities.
  • [TMM 2023] Resolving Zero-shot and Fact-based Visual Question Answering via Enhanced Fact Retrieval.
  • [ESA 2023] Image captioning for effective use of language models in knowledge-based visual question answering.
  • [EMNLP 2022] Retrieval Augmented Visual Question Answering with Outside Knowledge.
  • [EMNLP 2022] Entity-Focused Dense Passage Retrieval for Outside-Knowledge Visual Question Answering.
  • [IJCKG 2022] LaKo: Knowledge-driven Visual Question Answering via Late Knowledge-to-Text Injection.
  • [NeurIPS 2022] REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual Question Answering.
  • [CVPR 2022] MuKEA: Multimodal Knowledge Extraction and Accumulation for Knowledge-based Visual Question Answering.
  • [CVPR 2022] Transform-Retrieve-Generate: Natural Language-Centric Outside-Knowledge Visual Question Answering.
  • [ECCV 2022] A-OKVQA: A Benchmark for Visual Question Answering Using World Knowledge.
  • [ICCV 2022] VQA-GNN: Reasoning with Multimodal Semantic Graph for Visual Question Answering.
  • [AAAI 2022] Dynamic Key-Value Memory Enhanced Multi-Step Graph Reasoning for Knowledge-Based Visual Question Answering.
  • [AAAI 2022] An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA.
  • [ACM MM 2022] A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA.
  • [ACL 2022] Hypergraph Transformer: Weakly-Supervised Multi-hop Reasoning for Knowledge-based Visual Question Answering.
  • [WWW 2022] Improving and Diagnosing Knowledge-Based Visual Question Answering via Entity Enhanced Knowledge Injection.
  • [SITIS 2022] Multimodal Knowledge Reasoning for Enhanced Visual Question Answering.
  • [KBS 2022] Fact-based visual question answering via dual-process system.
  • [ISWC 2021] Zero-Shot Visual Question Answering Using Knowledge Graph.
  • [ISWC 2021] Graphhopper: Multi-hop Scene Graph Reasoning for Visual Question Answering.
  • [ACL 2021] In Factuality: Efficient Integration of Relevant Facts for Visual Question Answering.
  • [KDD 2021] Select, Substitute, Search: A New Benchmark for Knowledge-Augmented Visual Question Answering.
  • [CVPR 2021] KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain Knowledge-Based VQA.
  • [PR 2021] Knowledge base graph embedding module design for Visual question answering model.
  • [SIGIR 2021] Passage Retrieval for Outside-Knowledge Visual Question Answering.
  • [TNNLS 2021] Rich Visual Knowledge-Based Augmentation Network for Visual Question Answering.
  • [COLING 2020] Towards Knowledge-Augmented Visual Question Answering.
  • [arXiv 2020] Seeing is Knowing! Fact-based Visual Question Answering using Knowledge Graph Embeddings.
  • [ACM MM 2020] Boosting Visual Question Answering with Context-aware Knowledge Aggregation.
  • [EMNLP 2020] ConceptBert: Concept-Aware Representation for Visual Question Answering.
  • [PR 2020] Cross-modal knowledge reasoning for knowledge-based visual question answering.
  • [IJCAI 2020] Mucko: Multi-Layer Cross-Modal Knowledge Reasoning for Fact-based Visual Question Answering.
  • [AAAI 2020] KnowIT VQA: Answering Knowledge-Based Questions about Videos.
  • [AAAI 2019] KVQA: Knowledge-Aware Visual Question Answering.
  • [CVPR 2019] OK-VQA: Visual Question Answering Benchmark Requiring External Knowledge.
  • [NeurIPS 2018] Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering.
  • [ECCV 2018] Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering.
  • [CVPR 2018] Learning Visual Knowledge Memory Networks for Visual Question Answering.
  • [KDD 2018] R-VQA: Learning Visual Relation Facts with Semantic Attention for Visual Question

编辑推荐精选

Manus

Manus

全面超越基准的 AI Agent助手

Manus 是一款通用人工智能代理平台,能够将您的创意和想法迅速转化为实际成果。无论是定制旅行规划、深入的数据分析,还是教育支持与商业决策,Manus 都能高效整合信息,提供精准解决方案。它以直观的交互体验和领先的技术,为用户开启了一个智慧驱动、轻松高效的新时代,让每个灵感都能得到完美落地。

飞书知识问答

飞书知识问答

飞书官方推出的AI知识库 上传word pdf即可部署AI私有知识库

基于DeepSeek R1大模型构建的知识管理系统,支持PDF、Word、PPT等常见文档格式解析,实现云端与本地数据的双向同步。系统具备实时网络检索能力,可自动关联外部信息源,通过语义理解技术处理结构化与非结构化数据。免费版本提供基础知识库搭建功能,适用于企业文档管理和个人学习资料整理场景。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

TraeAI IDE协作生产力转型热门AI工具
酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

使用教程AI工具酷表ChatExcelAI智能客服AI营销产品
DeepEP

DeepEP

DeepSeek开源的专家并行通信优化框架

DeepEP是一个专为大规模分布式计算设计的通信库,重点解决专家并行模式中的通信瓶颈问题。其核心架构采用分层拓扑感知技术,能够自动识别节点间物理连接关系,优化数据传输路径。通过实现动态路由选择与负载均衡机制,系统在千卡级计算集群中维持稳定的低延迟特性,同时兼容主流深度学习框架的通信接口。

DeepSeek

DeepSeek

全球领先开源大模型,高效智能助手

DeepSeek是一家幻方量化创办的专注于通用人工智能的中国科技公司,主攻大模型研发与应用。DeepSeek-R1是开源的推理模型,擅长处理复杂任务且可免费商用。

KnowS

KnowS

AI医学搜索引擎 整合4000万+实时更新的全球医学文献

医学领域专用搜索引擎整合4000万+实时更新的全球医学文献,通过自主研发AI模型实现精准知识检索。系统每日更新指南、中英文文献及会议资料,搜索准确率较传统工具提升80%,同时将大模型幻觉率控制在8%以下。支持临床建议生成、文献深度解析、学术报告制作等全流程科研辅助,典型用户反馈显示每周可节省医疗工作者70%时间。

Windsurf Wave 3

Windsurf Wave 3

Windsurf Editor推出第三次重大更新Wave 3

新增模型上下文协议支持与智能编辑功能。本次更新包含五项核心改进:支持接入MCP协议扩展工具生态,Tab键智能跳转提升编码效率,Turbo模式实现自动化终端操作,图片拖拽功能优化多模态交互,以及面向付费用户的个性化图标定制。系统同步集成DeepSeek、Gemini等新模型,并通过信用点数机制实现差异化的资源调配。

AI IDE
腾讯元宝

腾讯元宝

腾讯自研的混元大模型AI助手

腾讯元宝是腾讯基于自研的混元大模型推出的一款多功能AI应用,旨在通过人工智能技术提升用户在写作、绘画、翻译、编程、搜索、阅读总结等多个领域的工作与生活效率。

AI 办公助手AI对话AI助手AI工具腾讯元宝智能体热门
Grok3

Grok3

埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型

Grok3 是由埃隆·马斯克旗下的人工智能公司 xAI 推出的第三代大规模语言模型,常被马斯克称为“地球上最聪明的 AI”。它不仅是在前代产品 Grok 1 和 Grok 2 基础上的一次飞跃,还在多个关键技术上实现了创新突破。

下拉加载更多