KG-MM-Survey

KG-MM-Survey

知识图谱与多模态学习融合研究综述

本项目汇总了知识图谱与多模态学习融合研究的相关论文,主要包括知识图谱驱动的多模态学习(KG4MM)和多模态知识图谱(MM4KG)两个方向。KG4MM探讨知识图谱对多模态任务的支持,MM4KG研究多模态技术在知识图谱领域的应用。项目覆盖理解推理、分类、生成、检索等多种任务,提供了详细的文献列表和资源。这是一份系统全面的知识图谱与多模态学习交叉领域研究综述。

知识图谱多模态学习视觉问答知识融合深度学习Github开源项目

KG-MM-Survey

Awesome License: MIT

Task

🙌 This repository collects papers integrating Knowledge Graphs (KGs) and Multi-Modal Learning, focusing on research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm.

😎 Welcome to recommend missing papers through Adding Issues or Pull Requests.

<details> <summary>👈 🔎 Roadmap </summary>

Roadmap

</details>

🔔 News

Todo:

    • Finish updating papers

📜 Content


🤖🌄 KG-driven Multi-modal Learning (KG4MM)

Understanding & Reasoning Tasks

<details> <summary>👈 🔎 Pipeline </summary>

KG4MMR

</details>

Visual Question Answering

<details> <summary>👈 🔎 Benchmarks </summary>

VQA

</details>
  • [arXiv 2024] Knowledge Condensation and Reasoning for Knowledge-based VQA.
  • [arXiv 2024] VCD: Knowledge Base Guided Visual Commonsense Discovery in Images.
  • [arXiv 2024] Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment.
  • [ACL 2024] Modality-Aware Integration with Large Language Models for Knowledge-based Visual Question Answering.
  • [arXiv 2024] II-MMR: Identifying and Improving Multi-modal Multi-hop Reasoning in Visual Question Answering.
  • [arXiv 2024] Knowledge Generation for Zero-shot Knowledge-based VQA.
  • [arXiv 2024] GeReA: Question-Aware Prompt Captions for Knowledge-based Visual Question Answering.
  • [arXiv 2024] Advancing Large Multi-modal Models with Explicit Chain-of-Reasoning and Visual Question Generation.
  • [AAAI 2024] BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining.
  • [arXiv 2024] Cross-modal Retrieval for Knowledge-based Visual Question Answering.
  • [TMM 2024] Learning to Supervise Knowledge Retrieval over a Tree Structure for Visual Question Answering.
  • [MTA 2024] Hierarchical Attention Networks for Fact-based Visual Question Answering.
  • [KAIS 2024] Knowledge enhancement and scene understanding for knowledge-based visual question answering.
  • [arXiv 2023] Multi-Clue Reasoning with Memory Augmentation for Knowledge-based Visual Question Answering.
  • [arXiv 2023] Open-Set Knowledge-Based Visual Question Answering with Inference Paths.
  • [arXiv 2023] Prompting Vision Language Model with Knowledge from Large Language Model for Knowledge-Based VQA.
  • [EMNLP 2023] Language Guided Visual Question Answering: Elevate Your Multimodal Language Model Using Knowledge-Enriched Prompts.
  • [EMNLP 2023] A Simple Baseline for Knowledge-Based Visual Question Answering.
  • [EMNLP 2023] MM-Reasoner: A Multi-Modal Knowledge-Aware Framework for Knowledge-Based Visual Question Answering.
  • [NeurIPS 2023] LoRA: A Logical Reasoning Augmented Dataset for Visual Question Answering.
  • [CVPR 2023] Prompting Large Language Models with Answer Heuristics for Knowledge-Based Visual Question Answering.
  • [EACL 2023] FVQA 2.0: Introducing Adversarial Samples into Fact-based Visual Question Answering.
  • [WACV 2023] VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge.
  • [ICASSP 2023] Outside Knowledge Visual Question Answering Version 2.0.
  • [ICME 2023] A Retriever-Reader Framework with Visual Entity Linking for Knowledge-Based Visual Question Answering.
  • [TIP 2023] Semantic-Aware Modular Capsule Routing for Visual Question Answering.
  • [ACM MM 2023] AI-VQA: Visual Question Answering based on Agent Interaction with Interpretability.
  • [SIGIR 2023] A Symmetric Dual Encoding Dense Retrieval Framework for Knowledge-Intensive Visual Question Answering.
  • [ICMR 2023] Explicit Knowledge Integration for Knowledge-Aware Visual Question Answering about Named Entities.
  • [TMM 2023] Resolving Zero-shot and Fact-based Visual Question Answering via Enhanced Fact Retrieval.
  • [ESA 2023] Image captioning for effective use of language models in knowledge-based visual question answering.
  • [EMNLP 2022] Retrieval Augmented Visual Question Answering with Outside Knowledge.
  • [EMNLP 2022] Entity-Focused Dense Passage Retrieval for Outside-Knowledge Visual Question Answering.
  • [IJCKG 2022] LaKo: Knowledge-driven Visual Question Answering via Late Knowledge-to-Text Injection.
  • [NeurIPS 2022] REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual Question Answering.
  • [CVPR 2022] MuKEA: Multimodal Knowledge Extraction and Accumulation for Knowledge-based Visual Question Answering.
  • [CVPR 2022] Transform-Retrieve-Generate: Natural Language-Centric Outside-Knowledge Visual Question Answering.
  • [ECCV 2022] A-OKVQA: A Benchmark for Visual Question Answering Using World Knowledge.
  • [ICCV 2022] VQA-GNN: Reasoning with Multimodal Semantic Graph for Visual Question Answering.
  • [AAAI 2022] Dynamic Key-Value Memory Enhanced Multi-Step Graph Reasoning for Knowledge-Based Visual Question Answering.
  • [AAAI 2022] An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA.
  • [ACM MM 2022] A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA.
  • [ACL 2022] Hypergraph Transformer: Weakly-Supervised Multi-hop Reasoning for Knowledge-based Visual Question Answering.
  • [WWW 2022] Improving and Diagnosing Knowledge-Based Visual Question Answering via Entity Enhanced Knowledge Injection.
  • [SITIS 2022] Multimodal Knowledge Reasoning for Enhanced Visual Question Answering.
  • [KBS 2022] Fact-based visual question answering via dual-process system.
  • [ISWC 2021] Zero-Shot Visual Question Answering Using Knowledge Graph.
  • [ISWC 2021] Graphhopper: Multi-hop Scene Graph Reasoning for Visual Question Answering.
  • [ACL 2021] In Factuality: Efficient Integration of Relevant Facts for Visual Question Answering.
  • [KDD 2021] Select, Substitute, Search: A New Benchmark for Knowledge-Augmented Visual Question Answering.
  • [CVPR 2021] KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain Knowledge-Based VQA.
  • [PR 2021] Knowledge base graph embedding module design for Visual question answering model.
  • [SIGIR 2021] Passage Retrieval for Outside-Knowledge Visual Question Answering.
  • [TNNLS 2021] Rich Visual Knowledge-Based Augmentation Network for Visual Question Answering.
  • [COLING 2020] Towards Knowledge-Augmented Visual Question Answering.
  • [arXiv 2020] Seeing is Knowing! Fact-based Visual Question Answering using Knowledge Graph Embeddings.
  • [ACM MM 2020] Boosting Visual Question Answering with Context-aware Knowledge Aggregation.
  • [EMNLP 2020] ConceptBert: Concept-Aware Representation for Visual Question Answering.
  • [PR 2020] Cross-modal knowledge reasoning for knowledge-based visual question answering.
  • [IJCAI 2020] Mucko: Multi-Layer Cross-Modal Knowledge Reasoning for Fact-based Visual Question Answering.
  • [AAAI 2020] KnowIT VQA: Answering Knowledge-Based Questions about Videos.
  • [AAAI 2019] KVQA: Knowledge-Aware Visual Question Answering.
  • [CVPR 2019] OK-VQA: Visual Question Answering Benchmark Requiring External Knowledge.
  • [NeurIPS 2018] Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering.
  • [ECCV 2018] Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering.
  • [CVPR 2018] Learning Visual Knowledge Memory Networks for Visual Question Answering.
  • [KDD 2018] R-VQA: Learning Visual Relation Facts with Semantic Attention for Visual Question

编辑推荐精选

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

Hunyuan3D-2

Hunyuan3D-2

高分辨率纹理 3D 资产生成

Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。

3FS

3FS

一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。

3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。

下拉加载更多