KG-MM-Survey

KG-MM-Survey

知识图谱与多模态学习融合研究综述

本项目汇总了知识图谱与多模态学习融合研究的相关论文,主要包括知识图谱驱动的多模态学习(KG4MM)和多模态知识图谱(MM4KG)两个方向。KG4MM探讨知识图谱对多模态任务的支持,MM4KG研究多模态技术在知识图谱领域的应用。项目覆盖理解推理、分类、生成、检索等多种任务,提供了详细的文献列表和资源。这是一份系统全面的知识图谱与多模态学习交叉领域研究综述。

知识图谱多模态学习视觉问答知识融合深度学习Github开源项目

KG-MM-Survey

Awesome License: MIT

Task

🙌 This repository collects papers integrating Knowledge Graphs (KGs) and Multi-Modal Learning, focusing on research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, where KGs support multi-modal tasks, and Multi-Modal Knowledge Graph (MM4KG), which extends KG studies into the MMKG realm.

😎 Welcome to recommend missing papers through Adding Issues or Pull Requests.

<details> <summary>👈 🔎 Roadmap </summary>

Roadmap

</details>

🔔 News

Todo:

    • Finish updating papers

📜 Content


🤖🌄 KG-driven Multi-modal Learning (KG4MM)

Understanding & Reasoning Tasks

<details> <summary>👈 🔎 Pipeline </summary>

KG4MMR

</details>

Visual Question Answering

<details> <summary>👈 🔎 Benchmarks </summary>

VQA

</details>
  • [arXiv 2024] Knowledge Condensation and Reasoning for Knowledge-based VQA.
  • [arXiv 2024] VCD: Knowledge Base Guided Visual Commonsense Discovery in Images.
  • [arXiv 2024] Cognitive Visual-Language Mapper: Advancing Multimodal Comprehension with Enhanced Visual Knowledge Alignment.
  • [ACL 2024] Modality-Aware Integration with Large Language Models for Knowledge-based Visual Question Answering.
  • [arXiv 2024] II-MMR: Identifying and Improving Multi-modal Multi-hop Reasoning in Visual Question Answering.
  • [arXiv 2024] Knowledge Generation for Zero-shot Knowledge-based VQA.
  • [arXiv 2024] GeReA: Question-Aware Prompt Captions for Knowledge-based Visual Question Answering.
  • [arXiv 2024] Advancing Large Multi-modal Models with Explicit Chain-of-Reasoning and Visual Question Generation.
  • [AAAI 2024] BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining.
  • [arXiv 2024] Cross-modal Retrieval for Knowledge-based Visual Question Answering.
  • [TMM 2024] Learning to Supervise Knowledge Retrieval over a Tree Structure for Visual Question Answering.
  • [MTA 2024] Hierarchical Attention Networks for Fact-based Visual Question Answering.
  • [KAIS 2024] Knowledge enhancement and scene understanding for knowledge-based visual question answering.
  • [arXiv 2023] Multi-Clue Reasoning with Memory Augmentation for Knowledge-based Visual Question Answering.
  • [arXiv 2023] Open-Set Knowledge-Based Visual Question Answering with Inference Paths.
  • [arXiv 2023] Prompting Vision Language Model with Knowledge from Large Language Model for Knowledge-Based VQA.
  • [EMNLP 2023] Language Guided Visual Question Answering: Elevate Your Multimodal Language Model Using Knowledge-Enriched Prompts.
  • [EMNLP 2023] A Simple Baseline for Knowledge-Based Visual Question Answering.
  • [EMNLP 2023] MM-Reasoner: A Multi-Modal Knowledge-Aware Framework for Knowledge-Based Visual Question Answering.
  • [NeurIPS 2023] LoRA: A Logical Reasoning Augmented Dataset for Visual Question Answering.
  • [CVPR 2023] Prompting Large Language Models with Answer Heuristics for Knowledge-Based Visual Question Answering.
  • [EACL 2023] FVQA 2.0: Introducing Adversarial Samples into Fact-based Visual Question Answering.
  • [WACV 2023] VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge.
  • [ICASSP 2023] Outside Knowledge Visual Question Answering Version 2.0.
  • [ICME 2023] A Retriever-Reader Framework with Visual Entity Linking for Knowledge-Based Visual Question Answering.
  • [TIP 2023] Semantic-Aware Modular Capsule Routing for Visual Question Answering.
  • [ACM MM 2023] AI-VQA: Visual Question Answering based on Agent Interaction with Interpretability.
  • [SIGIR 2023] A Symmetric Dual Encoding Dense Retrieval Framework for Knowledge-Intensive Visual Question Answering.
  • [ICMR 2023] Explicit Knowledge Integration for Knowledge-Aware Visual Question Answering about Named Entities.
  • [TMM 2023] Resolving Zero-shot and Fact-based Visual Question Answering via Enhanced Fact Retrieval.
  • [ESA 2023] Image captioning for effective use of language models in knowledge-based visual question answering.
  • [EMNLP 2022] Retrieval Augmented Visual Question Answering with Outside Knowledge.
  • [EMNLP 2022] Entity-Focused Dense Passage Retrieval for Outside-Knowledge Visual Question Answering.
  • [IJCKG 2022] LaKo: Knowledge-driven Visual Question Answering via Late Knowledge-to-Text Injection.
  • [NeurIPS 2022] REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual Question Answering.
  • [CVPR 2022] MuKEA: Multimodal Knowledge Extraction and Accumulation for Knowledge-based Visual Question Answering.
  • [CVPR 2022] Transform-Retrieve-Generate: Natural Language-Centric Outside-Knowledge Visual Question Answering.
  • [ECCV 2022] A-OKVQA: A Benchmark for Visual Question Answering Using World Knowledge.
  • [ICCV 2022] VQA-GNN: Reasoning with Multimodal Semantic Graph for Visual Question Answering.
  • [AAAI 2022] Dynamic Key-Value Memory Enhanced Multi-Step Graph Reasoning for Knowledge-Based Visual Question Answering.
  • [AAAI 2022] An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA.
  • [ACM MM 2022] A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA.
  • [ACL 2022] Hypergraph Transformer: Weakly-Supervised Multi-hop Reasoning for Knowledge-based Visual Question Answering.
  • [WWW 2022] Improving and Diagnosing Knowledge-Based Visual Question Answering via Entity Enhanced Knowledge Injection.
  • [SITIS 2022] Multimodal Knowledge Reasoning for Enhanced Visual Question Answering.
  • [KBS 2022] Fact-based visual question answering via dual-process system.
  • [ISWC 2021] Zero-Shot Visual Question Answering Using Knowledge Graph.
  • [ISWC 2021] Graphhopper: Multi-hop Scene Graph Reasoning for Visual Question Answering.
  • [ACL 2021] In Factuality: Efficient Integration of Relevant Facts for Visual Question Answering.
  • [KDD 2021] Select, Substitute, Search: A New Benchmark for Knowledge-Augmented Visual Question Answering.
  • [CVPR 2021] KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain Knowledge-Based VQA.
  • [PR 2021] Knowledge base graph embedding module design for Visual question answering model.
  • [SIGIR 2021] Passage Retrieval for Outside-Knowledge Visual Question Answering.
  • [TNNLS 2021] Rich Visual Knowledge-Based Augmentation Network for Visual Question Answering.
  • [COLING 2020] Towards Knowledge-Augmented Visual Question Answering.
  • [arXiv 2020] Seeing is Knowing! Fact-based Visual Question Answering using Knowledge Graph Embeddings.
  • [ACM MM 2020] Boosting Visual Question Answering with Context-aware Knowledge Aggregation.
  • [EMNLP 2020] ConceptBert: Concept-Aware Representation for Visual Question Answering.
  • [PR 2020] Cross-modal knowledge reasoning for knowledge-based visual question answering.
  • [IJCAI 2020] Mucko: Multi-Layer Cross-Modal Knowledge Reasoning for Fact-based Visual Question Answering.
  • [AAAI 2020] KnowIT VQA: Answering Knowledge-Based Questions about Videos.
  • [AAAI 2019] KVQA: Knowledge-Aware Visual Question Answering.
  • [CVPR 2019] OK-VQA: Visual Question Answering Benchmark Requiring External Knowledge.
  • [NeurIPS 2018] Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering.
  • [ECCV 2018] Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering.
  • [CVPR 2018] Learning Visual Knowledge Memory Networks for Visual Question Answering.
  • [KDD 2018] R-VQA: Learning Visual Relation Facts with Semantic Attention for Visual Question

编辑推荐精选

AEE

AEE

AI Excel全自动制表工具

AEE 在线 AI 全自动 Excel 编辑器,提供智能录入、自动公式、数据整理、图表生成等功能,高效处理 Excel 任务,提升办公效率。支持自动高亮数据、批量计算、不规则数据录入,适用于企业、教育、金融等多场景。

UI-TARS-desktop

UI-TARS-desktop

基于 UI-TARS 视觉语言模型的桌面应用,可通过自然语言控制计算机进行多模态操作。

UI-TARS-desktop 是一款功能强大的桌面应用,基于 UI-TARS(视觉语言模型)构建。它具备自然语言控制、截图与视觉识别、精确的鼠标键盘控制等功能,支持跨平台使用(Windows/MacOS),能提供实时反馈和状态显示,且数据完全本地处理,保障隐私安全。该应用集成了多种大语言模型和搜索方式,还可进行文件系统操作。适用于需要智能交互和自动化任务的场景,如信息检索、文件管理等。其提供了详细的文档,包括快速启动、部署、贡献指南和 SDK 使用说明等,方便开发者使用和扩展。

Wan2.1

Wan2.1

开源且先进的大规模视频生成模型项目

Wan2.1 是一个开源且先进的大规模视频生成模型项目,支持文本到图像、文本到视频、图像到视频等多种生成任务。它具备丰富的配置选项,可调整分辨率、扩散步数等参数,还能对提示词进行增强。使用了多种先进技术和工具,在视频和图像生成领域具有广泛应用前景,适合研究人员和开发者使用。

爱图表

爱图表

全流程 AI 驱动的数据可视化工具,助力用户轻松创作高颜值图表

爱图表(aitubiao.com)就是AI图表,是由镝数科技推出的一款创新型智能数据可视化平台,专注于为用户提供便捷的图表生成、数据分析和报告撰写服务。爱图表是中国首个在图表场景接入DeepSeek的产品。通过接入前沿的DeepSeek系列AI模型,爱图表结合强大的数据处理能力与智能化功能,致力于帮助职场人士高效处理和表达数据,提升工作效率和报告质量。

Qwen2.5-VL

Qwen2.5-VL

一款强大的视觉语言模型,支持图像和视频输入

Qwen2.5-VL 是一款强大的视觉语言模型,支持图像和视频输入,可用于多种场景,如商品特点总结、图像文字识别等。项目提供了 OpenAI API 服务、Web UI 示例等部署方式,还包含了视觉处理工具,有助于开发者快速集成和使用,提升工作效率。

HunyuanVideo

HunyuanVideo

HunyuanVideo 是一个可基于文本生成高质量图像和视频的项目。

HunyuanVideo 是一个专注于文本到图像及视频生成的项目。它具备强大的视频生成能力,支持多种分辨率和视频长度选择,能根据用户输入的文本生成逼真的图像和视频。使用先进的技术架构和算法,可灵活调整生成参数,满足不同场景的需求,是文本生成图像视频领域的优质工具。

WebUI for Browser Use

WebUI for Browser Use

一个基于 Gradio 构建的 WebUI,支持与浏览器智能体进行便捷交互。

WebUI for Browser Use 是一个强大的项目,它集成了多种大型语言模型,支持自定义浏览器使用,具备持久化浏览器会话等功能。用户可以通过简洁友好的界面轻松控制浏览器智能体完成各类任务,无论是数据提取、网页导航还是表单填写等操作都能高效实现,有利于提高工作效率和获取信息的便捷性。该项目适合开发者、研究人员以及需要自动化浏览器操作的人群使用,在 SEO 优化方面,其关键词涵盖浏览器使用、WebUI、大型语言模型集成等,有助于提高网页在搜索引擎中的曝光度。

xiaozhi-esp32

xiaozhi-esp32

基于 ESP32 的小智 AI 开发项目,支持多种网络连接与协议,实现语音交互等功能。

xiaozhi-esp32 是一个极具创新性的基于 ESP32 的开发项目,专注于人工智能语音交互领域。项目涵盖了丰富的功能,如网络连接、OTA 升级、设备激活等,同时支持多种语言。无论是开发爱好者还是专业开发者,都能借助该项目快速搭建起高效的 AI 语音交互系统,为智能设备开发提供强大助力。

olmocr

olmocr

一个用于 OCR 的项目,支持多种模型和服务器进行 PDF 到 Markdown 的转换,并提供测试和报告功能。

olmocr 是一个专注于光学字符识别(OCR)的 Python 项目,由 Allen Institute for Artificial Intelligence 开发。它支持多种模型和服务器,如 vllm、sglang、OpenAI 等,可将 PDF 文件的页面转换为 Markdown 格式。项目还提供了测试框架和 HTML 报告生成功能,方便用户对 OCR 结果进行评估和分析。适用于科研、文档处理等领域,有助于提高工作效率和准确性。

飞书多维表格

飞书多维表格

飞书多维表格 ×DeepSeek R1 满血版

飞书多维表格联合 DeepSeek R1 模型,提供 AI 自动化解决方案,支持批量写作、数据分析、跨模态处理等功能,适用于电商、短视频、影视创作等场景,提升企业生产力与创作效率。关键词:飞书多维表格、DeepSeek R1、AI 自动化、批量处理、企业协同工具。

下拉加载更多