Project Icon

Awesome-Implicit-NeRF-Robotics

机器人领域中神经隐式表示和NeRF技术的最新进展

这个项目汇集了神经隐式表示和NeRF在机器人领域的应用论文,涵盖物体姿态估计、SLAM、操作学习、物体重建、物理模拟和导航规划等方向。它为研究人员和工程师提供了解该交叉领域最新进展的综合资源。

Awesome-Implicit-NeRF-Robotics Awesome

This repo contains a curative list of Implicit Representations and NeRF papers relating to Robotics/RL domain, inspired by awesome-computer-vision

Please feel free to send me pull requests or email to add papers!

If you find this repository useful, please consider citing and STARing this list. Feel free to share this list with others!

For an overview of NeRFs, checkout the Survey (Neural Volume Rendering: NeRF And Beyond), Blog post (NeRF Explosion 2020) and Collection (awesome-NeRF)


Overview


Object Pose Estimation

  • BundleSDF: "Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects", CVPR, 2023. [Paper] [Webpage]

  • ShAPO: "Implicit Representations for Multi Object Shape Appearance and Pose Optimization", ECCV, 2022. [Paper] [Pytorch Code] [Webpage] [Video]

  • NCF: "Neural Correspondence Field for Object Pose Estimation", ECCV, 2022. [Paper] [Pytorch Code] [Webpage]

  • Neural-Sim: "Learning to Generate Training Data with NeRF", ECCV 2022. [Paper] [Pytorch Code] [Webpage]

  • DISP6D: "Disentangled Implicit Shape and Pose Learning for Scalable 6D Pose Estimation", ECCV 2022. [Paper] [Pytorch Code] [Webpage] [Video]

  • SNAKE: "SNAKE: Shape-aware Neural 3D Keypoint Field", NeurIPS, 2022. [Paper] [Pytorch Code]

  • NeRF-RPN: "A general framework for object detection in NeRFs", CVPR 2023. [Paper] [Video]

  • NeRF-MAE: "Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields", ECCV 2024. [Paper] [Webpage] [Pytorch Code]

  • nerf2nerf: "Pairwise Registration of Neural Radiance Fields", arXiv. [Paper] [Pytorch Code] [Webpage] [Dataset]

  • iNeRF: "Inverting Neural Radiance Fields for Pose Estimation", IROS, 2021. [Paper] [Pytorch Code] [Website] [Dataset]

  • NeRF-Pose: "A First-Reconstruct-Then-Regress Approach for Weakly-supervised 6D Object Pose Estimation", arXiv. [Paper]

  • PixTrack: "Precise 6DoF Object Pose Tracking using NeRF Templates and Feature-metric Alignment", arXiv. [Paper] [Pytorch Code]

  • "Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation", arXiv. [Paper] [Website]

  • NARF22: "Neural Articulated Radiance Fields for Configuration-Aware Rendering", IROS, 2022. [Paper] [Website]

  • FroDO: "From Detections to 3D Objects", CVPR, 2020. [Paper]

  • SDFEst: "Categorical Pose and Shape Estimation of Objects From RGB-D Using Signed Distance Fields", RA-L, 2022. [Paper] [Pytorch Code]

  • SSC-6D: "Self-Supervised Category-Level 6D Object Pose Estimation with Deep Implicit Shape Representation", AAAI, 2022. [Paper] [Pytorch Code]

  • Style2NeRF: "An Unsupervised One-Shot NeRF for Semantic 3D Reconstruction", BMVC, 2022. [Paper]

  • "Shape, Pose, and Appearance from a Single Image via Bootstrapped Radiance Field Inversion", CVPR, 2023. [Paper] [Code]

  • TexPose: "Neural Texture Learning for Self-Supervised 6D Object Pose Estimation", CVPR 2023. [Paper][Code]

  • Canonical Fields: "Self-Supervised Learning of Pose-Canonicalized Neural Fields", arXiv. [Paper]

  • NeRF-Det: "Learning Geometry-Aware Volumetric Representation for Multi-View 3D Object Detection", arXiv. [Paper] [[Page] https://chenfengxu714.github.io/nerfdet/] [[Code] https://github.com/facebookresearch/NeRF-Det]

  • One-step NeRF: "Marrying NeRF with Feature Matching for One-step Pose Estimation", ICRA, 2024. [Paper] [Short Video] [[Website&Code] Coming]


SLAM

  • iSDF: "Real-Time Neural Signed Distance Fields for Robot Perception", RSS, 2022. [Paper] [Pytorch Code] [Website]

  • LENS: "LENS: Localization enhanced by NeRF synthesis", CORL, 2021. [Paper]

  • NICE-SLAM: "Neural Implicit Scalable Encoding for SLAM", CVPR, 2021. [Paper] Pytorch Code] [Website]

  • iMAP: "Implicit Mapping and Positioning in Real-Time", ICCV, 2021. [Paper] [Website]

  • BNV-Fusion: "BNV-Fusion: Dense 3D Reconstruction using Bi-level Neural Volume Fusion", CVPR, 2022. [Paper] Pytorch Code]

  • NeRF-SLAM: "Real-Time Dense Monocular SLAM with Neural Radiance Fields", arXiv. [Paper]

  • NICER-SLAM: "Neural Implicit Scene Encoding for RGB SLAM", arXiv. [Paper] [Video]

  • Nerfels: "Renderable Neural Codes for Improved Camera Pose Estimation", CVPR 2022 Workshop. [Paper]

  • GO-Surf: "A Real-time Monocular Visual SLAM with ORB Features and NeRF-realized Mapping", 3DV, 2022. [Paper] [[Website(https://jingwenwang95.github.io/go_surf/)] [Pytorch Code]

  • Orbeez-SLAM: "Neural Feature Grid Optimization for Fast, High-Fidelity RGB-D Surface Reconstruction", arXiv, 2022. [Paper]

  • ESLAM: "Efficient Dense SLAM System Based on Hybrid Representation of Signed Distance Fields", arXiv, 2022. [Paper]

  • Panoptic Multi-TSDFs: "a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency", ICRA, 2022. [Paper] [Pytorch Code]

  • SHINE-Mapping: "Large-Scale 3D Mapping Using Sparse Hierarchical Implicit Neural Representations", ICRA, 2023. [Paper] [Code]

  • "SDF-based RGB-D Camera Tracking in Neural Scene Representations", ICRA Workshop, 2022. [Paper]

  • Loc-NeRF: "Monte Carlo Localization using Neural Radiance Fields", ICRA, 2023. [Paper] [Code] [Video]

  • Vox-Fusion: "Dense Tracking and Mapping with Voxel-based Neural Implicit Representation", ISMAR, 2022. [Paper] [Website] [Pytorch Code] [Video]

  • NodeSLAM: "Dense Tracking and Mapping with Voxel-based Neural Implicit Representation", 3DV, 2020. [Paper]

  • iLabel: "Revealing Objects in Neural Fields", RA-L, 2023. [Paper]

  • Nerf–: "Neural radiance fields without known camera parameters", arXiv. [Paper]

  • L2G-NeRF: "Local-to-Global Registration for Bundle-Adjusting Neural Radiance Fields", CVPR, 2023. [Paper] [Website] [code]

  • H2-Mapping: "Real-time Dense Mapping Using Hierarchical Hybrid Representation", RA-L, 2023. [Paper] [code]

  • Continual Neural Mapping: "Learning An Implicit Scene Representation from Sequential Observations", ICCV, 2021. [Paper]

  • LATITUDE: Robotic Global Localization with Truncated Dynamic Low-pass Filter in City-scale NeRF, ICRA, 2023. [Paper] [Pytorch Code]

  • "Dense RGB SLAM with neural implicit maps", ICLR, 2023. [Paper]

  • NOCaL: Calibration-free semi-supervised learning of odometry and camera intrinsics, ICRA, 2023. [Paper] [Website]

  • IRMCL: Implicit Representation-based Online Global Localization, arXiv. [Paper] [Code]

  • Efficient Implicit Neural Reconstruction Using LiDAR, ICRA, 2023. [Paper] [Website] [Pytorch Code] [Video]

  • vMAP: "Vectorised Object Mapping for Neural Field SLAM", CVPR, 2023. [Paper] [Website]

  • "An Algorithm for the SE(3)-Transformation on Neural Implicit Maps for Remapping Functions", RA-L, 2022. [Paper]

  • "Implicit Object Reconstruction With Noisy Data", RSS Workshop, 2021. [Paper]

  • NeuSE: "Neural SE(3)-Equivariant Embedding for Consistent Spatial Understanding with Objects", arXiv. [Paper] [Website]

  • ObjectFusion: "Accurate object-level SLAM with neural object priors", Graphical Models, 2022. [Paper]

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号