#NLP
ABigSurvey:自然语言处理和机器学习领域最全面的调研论文集
FastDeploy: 高效易用的深度学习模型部署工具包
探索日本自然语言处理的宝库:awesome-japanese-nlp-resources项目解析
allennlp
AllenNLP是一个基于PyTorch的Apache 2.0自然语言处理研究库,专注于开发先进的深度学习模型。该项目已进入维护模式,并将在2022年12月16日前继续修复问题和响应用户提问。推荐的替代项目包括AI2 Tango、allennlp-light、flair和torchmetrics,以帮助用户更好地管理实验和使用预训练模型。
stanza
Stanza是斯坦福NLP团队开发的Python自然语言处理库,支持60多种语言,提供高精度的自然语言处理工具,并可与Java Stanford CoreNLP软件集成。新推出的生物医学和临床英文模型包可以处理生物医学文献和临床笔记的句法分析和命名实体识别。Stanza可通过pip和Anaconda安装,适用于Python 3.6及以上版本,提供详细的文档和在线示例,帮助用户快速入门并高效使用。
nlp-recipes
该资源库提供构建NLP系统的示例和最佳实践,重点关注最新的深度学习方法和常见场景,如文本分类、命名实体识别和文本摘要。支持多语言,特别是利用预训练模型应对不同语言任务。内容基于与客户的合作经验,旨在简化开发过程,帮助数据科学家和工程师快速部署AI解决方案。
awesome-project-ideas
提供30多个深度学习和机器学习项目创意,从入门到研究级别,适用于学术界和工业界。涵盖黑客松创意、文本处理、时间序列预测、推荐系统、图像和视频处理、音乐和音频处理等多个领域,帮助开发者和研究人员实践最新技术。
DeepPavlov
DeepPavlov是一个基于PyTorch的开源对话AI库,适用于生产级聊天机器人、复杂对话系统开发和自然语言处理研究。支持Linux、Windows和MacOS平台,兼容Python 3.6至3.11版本。提供丰富的预训练NLP模型,如命名实体识别、意图分类、文本问答和句子相似度等,支持CLI和Python接口,便于模型训练、评估和推断。通过REST API和Socket API实现与AWS等服务的无缝集成。
OpenPrompt
OpenPrompt是一个开源的Prompt学习框架,提供灵活且可扩展的解决方案,兼容Huggingface transformers等预训练模型。支持多种提示方法,如模板化和Verbalizer,简化Prompt学习和模型训练。支持UltraChat等新项目,广泛应用于各类NLP任务。
awesome-ai-ml-dl
awesome-ai-ml-dl项目集中于人工智能、机器学习及深度学习领域,提供全面的学习笔记与精选资源。适用于工程师、开发者和数据科学家等专业人员,帮助他们更有效地获取知识和资源。此项目促进了学习的乐趣并使相关资料易于获取。
nlp
介绍自然语言处理(NLP)的基础知识和实际应用,包括常用数据集、机器学习模型评价方法、词袋模型、TFIDF、Word2Vec、Doc2Vec等技术,以及多层感知机、fasttext和LDA在文档分类和主题建模中的应用。还展示了对美食评语的情感分析,说明了NLP在文本理解与安全领域的重要性。此外,还介绍了一本开源NLP入门书籍的写作和更新过程,适合想深入了解NLP技术的读者。
500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code
该项目集合包括超过500个人工智能项目,涵盖机器学习、深度学习、计算机视觉和自然语言处理等多个领域。每个项目均附带代码链接,适合各层次开发者使用。项目持续更新,确保所有链接有效,用户也可提交请求和贡献代码。