100-Days-Of-ML-Code学习资料汇总 - 100天入门机器学习编程挑战

Ray

100-Days-Of-ML-Code学习资料汇总 - 100天入门机器学习编程挑战

100-Days-Of-ML-Code是一个由Siraj Raval发起的机器学习编程挑战项目,旨在帮助初学者在100天内系统地学习机器学习的基础知识和编程技能。本文整理了该项目的相关学习资源,方便大家快速开始这个有趣的学习之旅。

项目简介

该项目的核心理念是每天至少花1小时学习或编写机器学习相关的代码,持续100天。通过这种方式,参与者可以循序渐进地掌握机器学习的基本概念和算法实现。

项目覆盖的主要内容包括:

  • 数据预处理
  • 监督学习算法(线性回归、逻辑回归、SVM等)
  • 无监督学习算法(K-means聚类等)
  • 深度学习基础
  • Python、NumPy、Pandas等工具的使用

核心资源

  1. GitHub仓库

项目的主要代码和学习资料托管在GitHub上:

这些仓库包含了每天的学习内容、代码实现和信息图表,是最重要的参考资料。

  1. 博客文章

My 100 Days Of ML Code Journey

这篇文章详细记录了一位参与者的100天学习历程,可以作为参考。

  1. Reddit讨论

The 100 Days of ML Code Challenge

Reddit上的相关讨论,包含了许多参与者的反馈和建议。

视频教程

  1. 3Blue1Brown数学基础系列

这些视频对理解机器学习的数学基础非常有帮助。

  1. Sentdex的Python机器学习教程

详细的Python机器学习视频教程,涵盖了多个算法的实现。

推荐书籍

  1. 《Python数据科学手册》- Jake VanderPlas GitHub链接

这本书详细介绍了NumPy、Pandas等Python数据科学工具的使用,对编程实现很有帮助。

实用工具

  1. K-means聚类可视化工具

这个动画演示有助于理解K-means聚类算法的工作原理。

  1. TensorFlow Playground

交互式的神经网络可视化工具,有助于理解神经网络的工作机制。

通过以上资源,相信大家可以顺利开始100-Days-Of-ML-Code的学习之旅。记住,坚持才是关键,祝大家在这100天的挑战中收获满满!

机器学习100天挑战

决策树

K-means聚类

avatar
0
0
0
相关项目
Project Cover

leedl-tutorial

李宏毅教授的深度学习教程,基于《机器学习》(2021年春)并进行了优化,涵盖卷积神经网络、生成模型和自监督学习等多个领域。教程通过详细推导和重点讲解,降低了学习难度,适合中文学习者入门深度学习。

Project Cover

lance

Lance是为机器学习工作流程优化的现代列式数据格式,提供比Parquet快100倍的随机访问性能,支持矢量索引和数据版本控制。兼容pandas、DuckDB、Polars和pyarrow,适用于搜索引擎、大规模机器学习训练以及复杂数据的存储和查询,如机器人数据和大型图像。更多集成支持即将推出。

Project Cover

mediapipe

MediaPipe为开发者提供了一个平台,支持在移动、Web、桌面、边缘设备和物联网中集成机器学习功能。通过跨平台API和预训练模型,可快速部署和定制AI解决方案。MediaPipe还包含模型定制工具和浏览器内的可视化评估工具,支持高效开发和迭代。欢迎访问Google官方文档了解更多,并参与社区交流和贡献。

Project Cover

DeepSpeech

DeepSpeech是一个开源语音转文字引擎,基于百度的Deep Speech研究,并利用Google TensorFlow实现。提供详细的安装、使用和训练模型文档。最新版本及预训练模型可在GitHub获取,支持和贡献指南请参阅相应文件。

Project Cover

d2l-en

这本开源书籍使用Jupyter笔记本无缝整合深度学习的概念、背景和代码,免费提供给所有人。书中包含可运行代码、技术深度和社区讨论,帮助读者解决实际问题并成长为应用机器学习科学家。

Project Cover

tfjs

TensorFlow.js 是开源的硬件加速JavaScript库,专用于训练和部署机器学习模型。开发者能利用灵活直观的API在浏览器和Node.js环境中创建和运行模型,包括从头开始构建模型、运行现有模型和使用传感器数据重新训练模型。支持多种后端和平台,满足不同项目的需求。

Project Cover

sonnet

Sonnet是由DeepMind开发的TensorFlow 2扩展库,提供简单且可组合的抽象模型,核心概念为snt.Module,支持自定义和预定义模块。Sonnet不限制训练框架,适合监督、非监督和强化学习,并支持分布式训练和高级的TensorFlow功能。

Project Cover

autotrain-advanced

AutoTrain Advanced 是一款无代码解决方案,只需几次点击即可训练机器学习模型。需要上传正确格式的数据以创建项目,关于数据格式和定价的详细信息请查阅文档。AutoTrain 免费使用,只需为使用的资源付费。支持在 Colab 和 Hugging Face Spaces 上运行,也可以通过 PIP 本地安装。适用于 Python 3.10 及以上版本,推荐在 Conda 环境中运行。更多信息请访问项目文档页面。

Project Cover

cheatsheets-ai

提供详尽的深度学习和机器学习速查表,包括Tensorflow、Keras、Numpy等热门工具,帮助工程师和研究人员快速掌握核心知识,提高工作效率。访问AI Cheatsheets获取更多资源和最新技术信息,适用于各水平从业者。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号