From-0-to-Research-Scientist-resources-guide学习资料汇总 - 从零开始成为AI研究科学家的全面指南

Ray

From-0-to-Research-Scientist-resources-guide学习指南

从零开始成为AI研究科学家,需要掌握扎实的理论基础和实践技能。本文整理了一份全面的学习资源指南,帮助有志于AI研究的同学规划学习路径。

项目简介

NLP图片

From-0-to-Research-Scientist-resources-guide 是一个为本科生或任何想深入AI领域的人提供的详细学习指南。它涵盖了从数学基础到前沿AI技术的全面内容,旨在帮助学习者建立坚实的知识体系。

学习内容

该指南主要包括以下几个方面的内容:

  1. 数学基础

    • 线性代数
    • 概率论
    • 微积分
    • 优化理论
  2. 机器学习

  3. 深度学习

  4. 强化学习

  5. 自然语言处理

数学基础学习资源

数学是AI研究的基石,本指南提供了丰富的数学学习资源:

线性代数

概率论

微积分

机器学习与深度学习资源

在掌握数学基础后,可以开始学习机器学习和深度学习的核心内容:

自然语言处理资源

NLP是AI的重要分支,以下是一些优质学习资源:

学习建议

  1. 打好数学基础,特别是线性代数、概率论和优化理论
  2. 系统学习机器学习和深度学习的基础知识
  3. 选择感兴趣的方向(如NLP、CV等)深入学习
  4. 多动手实践,参与开源项目
  5. 阅读顶会论文,跟踪最新研究进展

希望这份学习指南能够帮助你从零开始,一步步成长为AI研究科学家。学习的道路可能很漫长,但只要保持热情和毅力,终会达到目标。祝学习愉快,未来可期。

avatar
0
0
0
相关项目
Project Cover

vit-base-patch32-384

Vision Transformer(ViT)是一款图像分类模型,采用Transformer编码器架构,通过将图像分割为固定大小patch进行处理。模型在包含1400万张图像的ImageNet-21k数据集完成预训练,并在ImageNet-1k数据集上进行384x384分辨率的微调。提供预训练权重,可直接应用于图像分类或迁移学习任务。

Project Cover

tf_efficientnetv2_m.in21k_ft_in1k

EfficientNetV2模型在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,最初使用TensorFlow构建,由Ross Wightman移植至PyTorch。其参数量为54.1M,能够在不同分辨率下实现精确的图像识别,并支持通过timm库执行图像分类、特征提取和嵌入生成等多任务。

Project Cover

ddpm-ema-church-256

ddpm-ema-church-256项目采用DDPM模型进行图像合成,结合扩散概率模型与Langevin动态,取得CIFAR10数据集Inception分数9.46和FID分数3.17。支持DDPM、DDIM、PNDM调度器推理,实现质量与速度平衡,并提供预训练管道以生成高质量图像。项目为图像生成与压缩提供了创新思路。

Project Cover

STRANGER-ANIME

项目使用Huggingface API生成逼真的数字艺术图像,通过关键词组合生成细致且富有情感的视觉效果。用户可以根据需要调整诸如头发颜色、眼睛颜色和雨天等图像细节,实现个性化艺术创作,适用于艺术设计和视觉表达等领域,展示出现代AI在视觉艺术中的应用能力。

Project Cover

SwallowMaid-8B-L3-SPPO-abliterated

SwallowMaid-8B-L3-SPPO-abliterated项目通过mergekit工具多步骤合并多种预训练语言模型,提升模型整体性能及角色扮演功能。该项目结合Llama-3-Instruct-abliteration-LoRA-8B等模型,采用线性和任务算术方法,并注入35% RP-Mix向量方向,增强角色扮演与叙事能力,同时保留Meta's Llama-3-Instruct微调特质,提升人机交互体验。

Project Cover

zephyr-7B-alpha-AWQ

Zephyr 7B Alpha是一个基于Mistral-7B训练的对话助手模型。本版本采用AWQ量化技术将模型压缩至4位精度,使用wikitext数据集和128g量化参数进行优化。相比GPTQ,AWQ量化能提供更快的推理速度,同时显著降低显存占用,使模型可以在配置较低的GPU上高效部署运行。

Project Cover

DanTagGen-beta

DanTagGen-beta是一款基于LLaMA架构的AI标签生成器,专为Danbooru风格的AI艺术创作设计。通过5.3M数据集训练,该工具能够根据基础标签智能推荐相关标签,有效提升生成图像的质量和细节。DanTagGen-beta支持多种部署方式,包括llama.cpp和量化模型,为AI艺术创作者提供了高效的标签辅助工具。

Project Cover

eva02_large_patch14_448.mim_m38m_ft_in22k_in1k

EVA02_large_patch14_448是一个基于视觉Transformer架构的图像处理模型,通过在Merged-38M数据集预训练和ImageNet数据集微调,在图像分类任务中达到90.054%的准确率。模型整合了均值池化、位置编码等技术,支持图像分类和特征提取应用。

Project Cover

convnextv2_large.fcmae_ft_in22k_in1k

ConvNeXt-V2是一个大型图像分类模型,通过FCMAE框架预训练并在ImageNet数据集上微调。模型包含1.98亿参数,Top1准确率达87.26%,可用于图像分类、特征提取和嵌入等计算机视觉任务。其224x224的标准训练分辨率和多功能性使其成为视觉处理的实用选择。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号