LLM-workshop-2024学习资料汇总 - 从零开始理解和实现大型语言模型

Ray

LLM-workshop-2024

LLM-workshop-2024:从零开始理解和实现大型语言模型

LLM Workshop

项目简介

LLM-workshop-2024是一个为期4小时的编码工作坊,旨在帮助开发者理解大型语言模型(LLMs)的工作原理,以及如何从零开始使用PyTorch实现它们。这个项目由Sebastian Raschka创建,基于他的《从零开始构建大型语言模型》一书的内容。

主要内容

工作坊分为以下几个部分:

  1. LLMs简介
  2. 理解LLM的输入数据
  3. 编写LLM架构
  4. 预训练LLMs
  5. 加载预训练权重
  6. 微调LLMs

每个部分都包含详细的代码示例和练习,帮助学习者逐步掌握LLM的核心概念和实现技巧。

学习资源

  1. GitHub仓库: https://github.com/rasbt/LLM-workshop-2024 这里包含了所有的代码示例和教程文档。

  2. 在线实验环境: Lightning AI Studio 提供了预配置的云环境,可以直接运行所有代码,尤其适合预训练和微调部分的实践。

  3. YouTube视频: Workshop录像 Sebastian Raschka的讲解视频,可以作为学习的辅助材料。

  4. 参考书籍: Build a Large Language Model From Scratch 工作坊内容基于此书,可以作为深入学习的参考资料。

  5. 开源库: LitGPT 工作坊使用的开源LLM训练和微调库,提供了更复杂但易读的代码实现。

学习路径

  1. 克隆GitHub仓库,阅读README文件了解项目概况。
  2. 按照setup文件夹中的说明配置本地环境,或使用提供的在线实验环境。
  3. 按照01_intro到06_finetuning的顺序学习每个模块的内容。
  4. 完成每个模块中的练习,加深理解。
  5. 观看YouTube视频,获得作者的详细讲解。
  6. 参考LitGPT库的代码,学习更高级的LLM实现技巧。

总结

LLM-workshop-2024提供了一个全面而实用的大型语言模型学习资源。通过理论学习、代码实践和开源工具的结合,学习者可以深入理解LLM的工作原理,并掌握从零实现LLM的技能。无论是AI研究人员还是实践开发者,都能从这个项目中获得宝贵的知识和经验。

让我们开始这段探索大型语言模型奥秘的旅程吧! 🚀🤖

avatar
0
0
0
相关项目
Project Cover

Prompt-Engineering-Guide

本指南详细介绍如何通过提示工程优化和提升大语言模型(LLMs)的应用,包括基础知识和高级技术,涵盖最新的研究论文、学习指南、讲座、参考资料及工具。适合开发者和研究人员理解与应用LLMs,支持13种语言,提供线上课程及多种服务。

Project Cover

chatbox

Chatbox 是一款支持多种语言模型(包括ChatGPT和Claude)的桌面客户端,适用于Windows、Mac和Linux系统。这款应用特别注重用户隐私,不需要部署即可安装使用。它提供多种高级功能,如图像生成、增强提示、键盘快捷方式、Markdown与Latex格式支持等,极大地提升用户工作效率。另外,Chatbox提供了团队协作功能和跨平台的Web版本,允许用户随时随地通过浏览器访问。

Project Cover

optimate

Optimate是由Nebuly AI开发的开源项目,提供多个库协助优化AI模型。虽然项目当前未在维护,其工具如Speedster、Nos和ChatLLaMA帮助用户针对硬件优化AI模型,实现成本节约。想了解更多信息,请访问官方文档。

Project Cover

graphrag

GraphRAG是一个革新的数据管道和转换套件,旨在利用大型语言模型(LLMs)的力量从非结构化文本中提取有意义的结构化数据。该项目通过加快索引过程并优化提示调整,提供在Azure上的端到端用户体验,有效增强LLMs处理私有数据的能力。此外,GraphRAG的研究和开发还专注于推动负责任的AI使用,确保用户能够最大限度地发挥系统的潜力并减少限制的影响。

Project Cover

rag-demystified

本项目深入探讨了检索增强生成(RAG)管道的内部机制,揭示其技巧、局限性和成本。通过LlamaIndex和Haystack框架,了解如何构建和优化RAG管道,并解决透明度和错误问题。详细分析了子问题查询引擎的工作原理,帮助用户理解复杂的RAG管道的关键组成部分和面临的挑战。

Project Cover

awesome-instruction-datasets

该项目提供多语言和多任务的高质量开源指令调优数据集,方便研究人员和开发者轻松访问和利用这些资源。收录数据集包括人类生成、自我指令生成和混合生成的数据,以加速NLP领域的发展,支持如ChatGPT的指令跟随型大语言模型的训练。

Project Cover

safeguards-shield

Safeguards Shield是一个旨在安全、可靠使用大型语言模型(LLMs)的开发者工具包。本工具包提供保护层功能,能够防御恶意输入并过滤模型输出,使AI应用从原型快速转向生产阶段。此外,包含超过20种即用型检测器,为生成式AI(GenAI)应用提供全面的安全保障,并助力缓解LLM的可靠性与安全隐患。工具包还支持监控事件、成本及关于AI的责任指标,支持应用的长期发展。

Project Cover

Promptify

Promptify使用户可以使用GPT、PaLM等流行生成模型,轻松生成各种NLP任务提示。无需训练数据,通过简单的API调用就能快速实现多种NLP任务,如命名实体识别、文本分类和问题生成。其中包括优化提示以降低成本。适用于教育、医疗和企业等多个领域。

Project Cover

ax

Ax项目根据Stanford DSPy研究与Agentic workflows概念,实现智能代理快速开发。支持多种大型语言模型(LLM)、向量数据库,具备自动化提示生成、文档格式转换以及多模态DSPy和流式输出验证。该框架适用于Typescript生产级部署,低依赖性,满足现代软件开发需求。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号