Mava: 基于JAX的分布式多智能体强化学习框架

Ray

Mava: 开启多智能体强化学习的新纪元 🚀

在人工智能研究的前沿,多智能体强化学习(Multi-Agent Reinforcement Learning, MARL)一直是一个充满挑战和机遇的领域。随着技术的不断进步,研究者们迫切需要一个高效、灵活且易用的MARL研究框架。Mava应运而生,它是由InstaDeep公司研究团队开发的一个基于JAX的分布式多智能体强化学习框架,旨在为MARL研究提供强大的支持。

Mava的核心特性

Mava的设计理念源于简洁性和高效性。它继承了PureJaxRL和CleanRL的代码哲学,提供了易于理解和扩展的单文件实现。同时,Mava充分利用了JAX的优势,如pmapvmap,使得研究人员可以轻松实现分布式训练和快速迭代。

  1. 算法实现: Mava提供了多种MARL算法的实现,包括多智能体PPO(MAPPO)和独立PPO(IPPO)。这些算法遵循集中式训练去中心化执行(CTDE)和去中心化训练去中心化执行(DTDE)两种MARL范式。

  2. 环境支持: Mava集成了多个popular的MARL环境,如Robotic Warehouse、Level-Based Foraging和SMAX。这些环境都经过JAX化处理,以确保与Mava框架的无缝对接。

  3. 教育资源: 为了帮助新手快速入门,Mava提供了详细的Quickstart教程notebook,展示了如何使用Mava并突出了基于JAX的MARL的优势。

  4. 评估工具: Mava原生支持将实验结果记录为标准化的JSON文件,便于使用MARL-eval库进行下游实验绘图和数据聚合分析。

Mava logo

性能与速度的完美结合

Mava的一大亮点是其卓越的性能和训练速度。通过与其他基准算法的对比实验,Mava展现出了令人印象深刻的结果:

  1. SMAX环境: 在SMAX的多个任务中,Mava的循环IPPO和MAPPO系统表现出色,与JaxMARL中的基线算法相比具有竞争力。

  2. Robotic Warehouse环境: Mava在简单的RWARE任务上的训练速度远超EPyMARL,展示了端到端JAX化MARL系统的优势。

  3. Level-Based Foraging环境: Mava的循环MAPPO系统在LBF任务上同样表现优异,不仅性能卓越,而且训练速度显著提升。

Mava性能图

使用Mava进行研究

对于有志于MARL研究的学者和工程师,Mava提供了一个理想的起点:

  1. 安装: Mava目前不作为库安装,而是作为研究工具使用。用户可以通过克隆GitHub仓库并进行pip安装来使用Mava。
git clone https://github.com/instadeepai/mava.git
cd mava
pip install -e .
  1. 快速开始: 运行一个Mava系统非常简单,只需执行对应的系统文件即可:
python mava/systems/ff_ippo.py
  1. 配置管理: Mava使用Hydra进行配置管理,允许用户通过YAML文件或命令行参数灵活调整系统设置。

  2. 高级用法: Mava支持将经验数据记录到Flashbax Vault中,为离线MARL系统的研究提供了便利。

Mava的未来发展

Mava团队有着雄心勃勃的发展计划,包括:

  • 支持更多环境
  • 增强循环系统的鲁棒性
  • 支持非JAX环境
  • 实现离线策略算法
  • 支持连续动作空间的环境和算法

结语

Mava作为一个强大的MARL研究框架,为研究人员提供了一个高效、灵活且易用的工具。它不仅加速了MARL算法的实现和测试过程,还为推动整个领域的发展做出了重要贡献。无论您是MARL领域的新手还是经验丰富的研究者,Mava都将成为您不可或缺的得力助手。

让我们携手前进,共同探索多智能体强化学习的无限可能! 🌟

Mava步数/秒性能

参考资源

如果您在研究中使用了Mava,请引用以下技术报告:

@article{dekock2023mava,
    title={Mava: a research library for distributed multi-agent reinforcement learning in JAX},
    author={Ruan de Kock and Omayma Mahjoub and Sasha Abramowitz and Wiem Khlifi and Callum Rhys Tilbury
    and Claude Formanek and Andries P. Smit and Arnu Pretorius},
    year={2023},
    journal={arXiv preprint arXiv:2107.01460},
    url={https://arxiv.org/pdf/2107.01460.pdf},
}

让我们一起,用Mava开启多智能体强化学习研究的新篇章! 🚀🌠

avatar
0
0
0
最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号