OpenFedLLM: 联邦学习助力大语言模型在分散私有数据上的训练

Ray

OpenFedLLM:联邦学习赋能大语言模型隐私保护训练

在人工智能蓬勃发展的今天,大语言模型(Large Language Models, LLMs)已经成为了技术前沿的焦点。然而,随着公开数据的逐渐枯竭,如何利用分散在各方的私有数据来训练更强大的语言模型成为了一个迫切需要解决的问题。OpenFedLLM项目应运而生,为这一挑战提供了创新性的解决方案。

OpenFedLLM:开创性的联邦学习框架

OpenFedLLM是一个开源的研究代码库,旨在通过联邦学习(Federated Learning, FL)的方式在分散的私有数据上训练大语言模型。该项目由一群来自学术界和工业界的研究人员共同开发,为解决数据隐私和合规性问题提供了新的思路。

OpenFedLLM架构图

OpenFedLLM的核心理念是利用联邦学习的分布式特性,让参与方能够在不直接共享原始数据的情况下协作训练模型。这种方法不仅保护了数据隐私,还能充分利用分散在各方的大量高质量私有数据,从而推动大语言模型的进一步发展。

丰富的功能与灵活的设计

OpenFedLLM集成了多项先进特性,使其成为一个功能强大且灵活的研究平台:

  1. 多样化的联邦学习算法: 项目实现了7种主流的联邦学习算法,包括FedAvg、FedProx、SCAFFOLD和FedAvgM等。研究人员可以轻松比较不同算法的性能,并针对特定场景选择最佳方案。

  2. 先进的LLM训练方法: OpenFedLLM支持两种关键的LLM训练算法 - 指令微调(SFT)和价值对齐(DPO)。这使得研究人员能够探索如何在联邦学习环境下改进模型的指令遵循能力和对齐人类价值观。

  3. 全面的评估指标: 项目提供了30多种评估指标,涵盖了通用能力、医疗问答、金融问答、代码生成和数学解题等多个领域。这些指标可以全面衡量模型在不同任务上的表现。

  4. 模块化设计: OpenFedLLM采用了高度模块化的设计,将联邦学习和LLM训练的实现解耦。这不仅降低了工程复杂度,还方便了两个领域研究人员的独立贡献。

  5. 资源友好型: 通过量化技术和参数高效微调等方法,OpenFedLLM大大降低了硬件要求。研究人员甚至可以在单张消费级GPU(如NVIDIA 3090)上进行实验,这极大地提高了项目的可访问性。

快速上手与实践

对于想要尝试OpenFedLLM的研究人员和开发者,项目提供了详细的安装和使用指南。以下是一个简单的步骤概览:

  1. 克隆仓库并安装依赖:
git clone --recursive --shallow-submodules https://github.com/rui-ye/OpenFedLLM.git
cd OpenFedLLM
conda create -n fedllm python=3.10
conda activate fedllm
pip install -r requirements.txt
source setup.sh
  1. 运行联邦指令微调实验:
CUDA_VISIBLE_DEVICES=1 python main_sft.py \
 --model_name_or_path "meta-llama/Llama-2-7b-hf" \
 --dataset_name "vicgalle/alpaca-gpt4" \
 --dataset_sample 20000 \
 --fed_alg "fedavg" \
 --num_clients 20 \
 --sample_clients 2 \
 --max_steps 10 \
 --num_rounds 200 \
 --batch_size 16 \
 --gradient_accumulation_steps 1 \
 --seq_length 512 \
 --peft_lora_r 32 \
 --peft_lora_alpha 64 \
 --use_peft \
 --load_in_8bit \
 --output_dir "./output" \
 --template "alpaca" 

这个示例展示了如何使用FedAvg算法在Alpaca-GPT4数据集上对Llama-2-7b模型进行联邦指令微调。用户可以根据需要调整参数,如模型大小、数据集、联邦学习算法等。

OpenFedLLM的实际应用与性能

OpenFedLLM不仅仅是一个理论框架,其在实际应用中也展现出了令人瞩目的性能。以金融情感分析为例,研究人员使用FinGPT数据集进行了一系列实验,结果表明:

  1. 联邦学习方法(如FedAvg)显著优于本地训练,平均提升了11.5%的性能。
  2. 某些联邦学习算法(如SCAFFOLD、FedAvgM和FedAdaGrad)在金融领域表现尤为出色。
  3. 最令人惊喜的是,联邦学习训练的模型在某些任务上甚至超越了GPT-4的表现。

这些结果充分说明了OpenFedLLM的潜力,它不仅能够保护数据隐私,还能够通过协作训练达到甚至超越中心化训练的效果。

未来展望与挑战

尽管OpenFedLLM已经取得了显著的成果,但在联邦学习和大语言模型结合的道路上仍然存在诸多挑战和机遇:

  1. 异构偏好问题: 在联邦价值对齐中,不同参与方可能有着各自独特的文化、伦理和情境价值观。如何在训练共享模型的同时协调这些差异是一个复杂的问题。

  2. 个性化联邦学习: 如何在提升模型通用能力的同时,满足每个参与方对特定领域(如金融问答)的需求,是一个值得探索的方向。

  3. 隐私保护增强: 虽然联邦学习本身就具有一定的隐私保护性,但大语言模型强大的记忆能力可能会带来新的隐私风险。如何在保证模型效果的同时进一步加强隐私保护是一个重要课题。

  4. 效率优化: 考虑到大语言模型的规模,如何提高联邦学习过程中的训练效率和通信效率是亟待解决的问题。

OpenFedLLM为这些挑战提供了一个理想的研究平台。研究人员可以基于此框架开发新的算法、探索创新的应用场景,推动联邦学习和大语言模型两个领域的共同发展。

结语

OpenFedLLM的出现无疑为大语言模型的发展注入了新的活力。它不仅解决了数据隐私和合规性的问题,还为充分利用分散的私有数据提供了可能。随着更多研究者和开发者的加入,我们有理由相信,OpenFedLLM将成为推动AI技术向更加开放、安全和高效方向发展的重要力量。

对于有志于探索这一前沿领域的研究人员和开发者,OpenFedLLM无疑是一个值得深入研究的项目。无论您是对联邦学习感兴趣,还是专注于大语言模型的开发,OpenFedLLM都为您提供了一个理想的起点。让我们共同期待OpenFedLLM在未来带来更多突破性的成果,为人工智能的发展贡献力量。

OpenFedLLM GitHub仓库 OpenFedLLM论文

avatar
0
0
0
相关项目
Project Cover

flower

Flower 是一个高度可定制和可扩展的联邦学习框架,源自牛津大学的研究项目。支持包括 PyTorch、TensorFlow 和 Hugging Face Transformers 在内的多种机器学习框架。Flower 的设计原则包括可定制、可扩展、框架无关和易于理解,旨在为用户提供构建先进联邦学习系统的工具。通过详细的教程和文档,Flower 使联邦学习变得易于上手,并鼓励社区贡献和参与。

Project Cover

FedML

TensorOpera AI简化了生成式AI和大型语言模型的训练与部署。通过集成的MLOps、调度器和高性能机器学习库,开发者可以在去中心化GPU、多云、边缘服务器和智能手机上经济高效地运行复杂的AI任务。TensorOpera Launch自动配对最经济的GPU资源,消除环境设置和管理难题,支持大规模训练和无服务器部署。TensorOpera Studio和Job Store帮助开发者微调和部署模型,实现高效的跨平台AI工作流。

Project Cover

FedScale

FedScale是一个可扩展的开源联邦学习(FL)引擎和基准测试平台,提供高级API用于实现FL算法,并在多种硬件和软件环境中进行大规模部署和评估。FedScale包括大规模的FL基准测试,涵盖图像分类、对象检测、语言建模和语音识别等任务,同时提供数据集真实模拟FL训练环境。用户可以通过简单的安装流程在Linux和MacOS上快速部署,并利用丰富的教程和数据集开展实验。

Project Cover

PFLlib

提供36种传统和个性化联邦学习算法,涵盖3种场景和20个数据集。专注于统计异质性数据,支持高效GPU内存使用及新增的隐私保护功能。新手用户通过简单的示范指南即可快速上手,参与贡献算法、数据集和评估指标。支持非独立同分布和不均衡数据,并可在多达500个客户端上进行训练模拟。

Project Cover

FL-bench

FL-bench是一个开源的联邦学习基准测试平台,实现了多种经典和前沿算法。平台支持个性化联邦学习和域泛化等研究方向,提供简单接口用于自定义数据集和模型。集成了可视化工具,方便研究人员快速实现和对比不同方法。FL-bench旨在促进联邦学习领域的创新与发展。

Project Cover

OpenFedLLM

OpenFedLLM是一个开源研究代码库,专注于利用联邦学习技术训练大型语言模型。该项目整合了多种联邦学习算法和LLM训练方法,并提供全面的评估指标。通过支持指令微调和价值对齐,OpenFedLLM为研究人员提供了在分散私有数据上进行LLM训练的有力工具,助力隐私保护和模型性能优化研究。

Project Cover

openfl

OpenFL是一个开源的Python联邦学习框架,支持多种工作流程和深度学习框架。它专为数据科学家设计,提供灵活可扩展的实验环境,适用于医疗影像等敏感数据场景。该框架由Linux基金会托管,提供多种联邦聚合算法,并欢迎社区贡献。

Project Cover

tensorflow-federated

TensorFlow Federated是一个开源框架,用于分布式数据的机器学习和计算。它提供高级和低级API,允许开发者在保护隐私的同时利用分散数据进行模型训练和评估。支持自定义联邦学习算法,包含单机模拟环境,适合研究和实验。除了预测模型训练,还可用于分布式数据的聚合分析。

Project Cover

MetisFL

MetisFL是一个基于C++和Python3的开源联邦学习框架,注重可扩展性、效率和安全性。该框架提供完整的联邦学习工作流程,支持多种操作系统,并支持Docker容器部署。MetisFL主要应用于需要保护数据隐私的分布式机器学习场景,为研究人员和开发者提供实用工具。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号