Project Icon

UniRepLKNet

统一架构的大核卷积网络,提升多模态识别与时间序列预测精度

UniRepLKNet项目提出了一个适用于图像、音频、视频、点云和时间序列的大核卷积网络统一架构。通过提供四个设计大核卷积网络的架构指南,显著提升了多模态数据的识别性能。特别是在全球温度和风速预测等挑战性的时间序列预测任务中,UniRepLKNet表现优异,超过了现有系统。这一项目不仅重振了卷积神经网络在传统领域的表现,还展示了其在新兴领域的广泛应用潜力。

UniDepth - 单目深度测量的通用算法,兼容多种数据集
CVPR 2024GithubHugging FacePython包UniDepth开源项目深度估计
UniDepth项目提出了通用的单目深度测量方法,支持多个数据集如NYUv2、KITTI和SUN-RGBD。通过训练模型,该方法可直接从RGB图像生成深度和内参预测,无需预先深度数据。其高精度、低延迟的推理能力在多个基准测试中表现优秀。支持多种输入形状和比例,适合机器人视觉和自动驾驶等应用。
LWM - 百万级上下文多模态AI模型突破性成果
GithubLarge World ModelRingAttention多模态模型开源项目视频处理长文本理解
Large World Model (LWM)是一种创新的多模态AI模型,具备百万级上下文处理能力。LWM通过分析大规模视频和文本数据,实现了语言、图像和视频的综合理解与生成。该项目开源了多个模型版本,支持处理超长文本和视频,在复杂检索和长视频理解等任务中表现出色,为AI技术发展提供了新的可能性。
syn-rep-learn - 探索合成图像在视觉表示学习中的应用
Github人工智能合成数据学习图像生成模型开源项目深度学习视觉表示学习
Syn-Rep-Learn 项目研究合成图像在视觉表示学习中的应用。该项目包括三个主要研究方向:StableRep 探索文本到图像模型生成的合成图像在视觉表示学习中的作用,Scaling 分析合成图像在模型训练中的扩展规律,SynCLR 比较从模型和实际数据学习视觉的效果。这些研究为计算机视觉和机器学习领域提供了新的视角。
deformableLKA - 变形大核注意力机制提升医学图像分割效果
3D分割D-LKA NetDeformable Large Kernel AttentionGithubVision Transformer医学图像分割开源项目
变形大核注意力(D-LKA Attention)是一种新型医学图像分割方法。它通过大型卷积核高效处理图像数据,并使用可变形卷积适应不同数据模式。该方法有2D和3D两个版本,尤其是3D版本在处理跨层数据时表现优异。基于此技术开发的D-LKA Net架构在多个医学分割数据集上的表现超过了现有方法,展现了其在医学图像分析领域的潜力。
u-net - 使用Keras库构建深度神经网络的教程
GithubKerasTensorFlowU-NetUltrasound Nerve Segmentation开源项目深度学习
本教程使用Keras库构建深度神经网络,用于超声图像神经分割,特别适用于Kaggle竞赛。从数据预处理、模型定义、训练到提交文件生成,教程提供了详尽的步骤说明。实验表明该方法在测试图像中取得约0.57的得分,为后续优化提供了出发点。
LVM - 大规模视觉模型的创新顺序建模方法
GithubLVM大规模视觉模型序列建模开源项目视觉句子视觉预训练模型
LVM是一种创新视觉预训练模型,将多种视觉数据转化为视觉句子,并进行自回归式标记预测。该模型采用顺序建模方法,无需语言数据即可学习大规模视觉模型。通过设计视觉提示,LVM可解决多种视觉任务。兼容GPU和TPU,为大规模视觉模型学习提供新方法。
Awesome-LLMs-for-Video-Understanding - 视频理解领域大型语言模型应用综述
Github多模态大语言模型开源项目指令微调视频分析视频理解
该项目汇集了大型语言模型在视频理解领域的最新应用进展,包括视频LLM模型、训练策略、相关任务、数据集、基准测试和评估方法。项目全面概述了LLM如何推动视频理解技术发展,并探讨了其应用前景。这是研究人员和开发者了解视频LLM最新进展的重要资源。
RevCol - 多任务计算机视觉的新型架构
GithubRevCol图像分类开源项目目标检测计算机视觉语义分割
RevCol是一种新型神经网络架构,采用多个子网络(列)通过多层可逆连接组成。作为基础模型骨干,RevCol适用于图像分类、目标检测和语义分割等计算机视觉任务。该架构在ImageNet等基准测试中表现优异,项目提供了训练和评估代码,以及多个数据集上的预训练模型权重,方便研究人员进行进一步探索。
HorNet - 基于递归门控卷积的高效视觉骨干网络
GithubHorNetImageNetPyTorchRecursive Gated Convolution开源项目高阶空间交互
HorNet是一个基于递归门控卷积的视觉骨干网络家族,专注于高效的高阶空间交互。项目提供了多个在ImageNet数据集上训练和评估的模型,如HorNet-T、HorNet-S和HorNet-B,广泛应用于图像分类和点云理解等领域。项目页面提供详细的训练和评估说明及模型下载链接。HorNet在提升图像和3D对象分类精度方面表现优异,是计算机视觉研究中的重要工具。
UNI - 病理学AI基础模型助力精准医疗诊断
GithubHuggingfaceUNI图像处理开源项目模型深度学习病理学视觉编码器
UNI是一个基于1亿张病理图像预训练的视觉编码器,为病理学AI诊断提供了强大的基础模型。它在34项临床任务中展现出卓越性能,特别是在罕见和代表性不足的癌症类型诊断上。UNI不使用公开数据集进行预训练,有助于研究人员在避免数据污染的前提下构建和评估病理AI模型。该模型遵循CC-BY-NC-ND 4.0许可证,仅限非商业学术研究使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号