Project Icon

UniRepLKNet

统一架构的大核卷积网络,提升多模态识别与时间序列预测精度

UniRepLKNet项目提出了一个适用于图像、音频、视频、点云和时间序列的大核卷积网络统一架构。通过提供四个设计大核卷积网络的架构指南,显著提升了多模态数据的识别性能。特别是在全球温度和风速预测等挑战性的时间序列预测任务中,UniRepLKNet表现优异,超过了现有系统。这一项目不仅重振了卷积神经网络在传统领域的表现,还展示了其在新兴领域的广泛应用潜力。

LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
Awesome-Multimodal-LLM - 大语言模型(LLM)在多模态学习中的最新研究趋势
GithubLLM多模态学习开源开源项目模型微调神经网络
本页面介绍大语言模型(LLM)在多模态学习中的最新研究趋势,包括文本、视觉(图像和视频)、音频等多种模态。重点讨论如LLaMA、Alpaca和Bloom等开源且适合研究的LLM骨干模型及其学习方法,如全量微调、参数有效微调、上下文学习等。同时列举了具体的多模态LLM模型实例,如OpenFlamingo和MiniGPT-4,以及评估方法,如MultiInstruct和POPE,提供科研人员了解和研究LLM引导多模态学习的资源。
Convolutional-KANs - KAN卷积网络探索参数效率与性能提升
CKANGithub卷积图像处理开源项目机器学习神经网络
Convolutional-KANs项目将Kolmogorov-Arnold网络(KAN)架构应用于卷积层,引入可学习的非线性激活函数。初步实验表明,KAN卷积在保持准确性的同时,可能比传统卷积网络更具参数效率。该项目正在更复杂的数据集上进行进一步测试,以评估KAN卷积的实际性能。这一创新为计算机视觉领域开辟了新的研究方向。
Video-LLaVA - 统一视觉表示学习的新方法 增强跨模态交互能力
GithubVideo-LLaVA图像理解多模态开源项目视觉语言模型视频理解
Video-LLaVA项目提出了一种新的对齐方法,实现图像和视频统一视觉表示的学习。该模型在无图像-视频配对数据的情况下,展现出色的跨模态交互能力,同时提升图像和视频理解性能。研究显示多模态学习的互补性明显改善了模型在各类视觉任务上的表现,为视觉-语言模型开发提供新思路。
d2-net - 深度学习驱动的联合特征检测与描述
CNND2-NetGithub开源项目深度学习特征提取计算机视觉
D2-Net是一个用于联合检测和描述局部图像特征的卷积神经网络模型。该项目提供模型实现、预训练权重、特征提取脚本和MegaDepth数据集训练流程。D2-Net在图像匹配和3D重建等计算机视觉任务中表现优异,提高了特征提取的准确性和效率。项目支持多尺度特征提取,并包含在不同数据集上训练的模型权重。
torch-conv-kan - 引入基于Kolmogorov-Arnold表示理论的高效卷积神经网络
CUDAConvolutional layersGithubKolmogorov-Arnold NetworksPyTorchTorchConv KAN开源项目
项目展示了使用PyTorch和CUDA加速的Kolmogorov-Arnold网络(KAN)模型的训练、验证和量化,支持MNIST、CIFAR、TinyImagenet和Imagenet1k数据集的性能评估。当前项目持续开发,已发布涉及ResNet、VGG、DenseNet、U-net等架构的新模型和预训练权重,适用于医疗图像分割和高效卷积神经网络的进一步研究和优化。
Multimodal-AND-Large-Language-Models - 多模态与大语言模型前沿研究综述
Github人工智能多模态大语言模型开源项目机器学习视觉语言模型
本项目汇总了多模态和大语言模型领域的最新研究进展,涵盖结构化知识提取、事件抽取、场景图生成和属性识别等核心技术。同时探讨了视觉语言模型在推理、组合性和开放词汇等方面的前沿问题。项目还收录了大量相关综述和立场文章,为研究人员提供全面的领域概览和未来方向参考。
Video-LLaVA-7B - 统一图像和视频处理的多模态AI模型
GithubHuggingfaceVideo-LLaVA多模态模型大语言模型开源项目模型视觉语言处理视频理解
Video-LLaVA是一种新型多模态AI模型,采用对齐后投影方法学习统一视觉表示。该模型能同时处理图像和视频,具备出色的视觉推理能力。即使没有图像-视频配对数据,Video-LLaVA也能实现图像和视频间的有效交互。通过将统一视觉表示与语言特征空间绑定,该模型在多模态学习和各类视觉任务中展现优异性能。
KAIR - 多功能视频与图像增强开源工具箱,涵盖最新深度学习模型
BSRGANGithubSCUNetSwinIRUSRNetVRT开源项目
KAIR项目提供了视频超分辨率、去模糊、去噪等图像处理技术的训练和测试代码,支持如DnCNN、FFDNet、SRMD、MSRResNet、ESRGAN、SwinIR等最新模型。这些代码简洁易懂,并附有详细指南,即使是复杂的图像恢复任务也能取得高性能效果。项目定期更新,确保用户体验最新技术进展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号