Project Icon

tuned-lens

变压器模型分层预测机制的解析工具

Tuned Lens是一个开源工具包,用于分析变压器模型的分层预测过程。该工具通过训练和评估调谐镜头,展示了模型如何逐层构建预测。它使用仿射变换替代模型后几层,从中间表示中提取最佳预测,为研究人员提供了深入了解模型内部机制的方法。

Transformers-Tutorials - Transformers库深度学习模型教程集合
GithubHuggingFaceTransformers开源项目深度学习自然语言处理计算机视觉
这个项目汇集了基于HuggingFace Transformers库的多种深度学习模型教程,涵盖自然语言处理和计算机视觉等领域。内容包括BERT、DETR、LayoutLM等模型的微调和推理示例,展示了在图像分类、目标检测、文档分析等任务中的应用。所有代码采用PyTorch实现,并提供Colab notebooks方便实践。
vision_transformer - 视觉Transformer和MLP-Mixer模型库 高性能图像识别
FlaxGithubJAXMLP-MixerVision Transformer图像识别开源项目
项目包含多种视觉Transformer(ViT)和MLP-Mixer模型实现,提供ImageNet和ImageNet-21k预训练模型及JAX/Flax微调代码。通过交互式Colab笔记本可探索5万多个模型检查点。这些高性能图像分类模型代表了计算机视觉的前沿进展。
automated-interpretability - 语言模型神经元行为的自动化解释工具
GPT-2Github开源项目数据集模型权重神经元行为自动解释性
automated-interpretability项目开发了一套自动化工具,用于生成、模拟和评分语言模型中神经元行为的解释。该项目提供了代码库、神经元激活查看器和GPT-2 XL神经元的公开数据集。这些资源旨在帮助研究人员和开发者深入理解大型语言模型的内部机制。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
lucent - 将PyTorch神经网络可视化和解释的开源库
GithubLucentPyTorch开源项目深度学习可视化特征可视化神经网络解释
Lucent是一个将Lucid库功能适配到PyTorch平台的开源项目。它为PyTorch深度学习模型提供可视化和解释功能,使研究人员能够探索神经网络内部结构、生成特征可视化和进行风格迁移。该项目提供教程和示例notebook,便于快速入门。尽管处于早期阶段,Lucent已展现出在解释和改进深度学习模型方面的潜力。
simple-hierarchical-transformer - 分层Transformer模型探索多层次预测编码
GithubTransformer开源项目注意力机制深度学习神经网络自然语言处理
这个项目提出了一种在GPT模型中实现多层次预测编码的方法。它通过在Transformer中引入多层结构,结合局部注意力和全局信息传递。实验结果显示,该方法在维持性能的同时提升了效率。项目允许自定义层次结构、维度和注意力窗口大小,为研究人员提供了探索分层Transformer的实验工具。项目代码支持灵活配置,包括调整层次数量、模型维度和注意力窗口大小。这种设计使研究人员能够方便地进行不同参数的对比实验,有助于深入理解分层Transformer的性能特点。
xtuner - 全面的模型微调解决方案,支持LLM和VLM的高效训练
DeepSpeedGithubInternLMLlama2QLoRAXTuner开源项目
XTuner是一款高效灵活的大模型微调工具包,支持LLM和VLM在多种GPU上的预训练和微调。它能够在单个8GB GPU上微调7B模型,并支持超过70B模型的多节点微调。XTuner兼容DeepSpeed,支持多种优化技术,并涵盖多种微调方法如QLoRA和LoRA。该工具包提供连续预训练、指令微调和代理微调等功能,输出模型可以无缝集成到部署和评估工具中,适应多种应用场景。
Transformers-Recipe - 学习与应用Transformer的指南
AttentionGithubNLPTransformer开源项目强化学习计算机视觉
该指南为自然语言处理(NLP)及其他领域的学习者提供了丰富的Transformer学习资源,包括基础介绍、技术解析、实际实现和应用。通过精选的文章、视频和代码示例,帮助用户深入掌握Transformer模型的理论与实践。
torch-dreams - 神经网络可视化与解释性增强工具
GithubTorch-Dreams可解释性图像生成开源项目特征可视化神经网络
Torch-Dreams是一个Python库,专注于神经网络可视化和增强模型可解释性。它提供特征可视化、通道激活和多模型同步可视化等功能,支持批量处理和自定义变换。这个工具适合研究人员分析深度学习模型内部机制,也可用于生成艺术创作。
TransformerPrograms - Transformer模型转Python程序的新型解释方法
GithubTransformer Programs代码生成开源项目机器学习程序合成自然语言处理
TransformerPrograms项目提出了一种新方法,可将Transformer模型转换为易读的Python程序。该项目提供了训练和转换工具,并包含多个示例程序,涵盖从排序到命名实体识别等任务。这为解释Transformer模型提供了新视角,有助于研究者探索模型内部机制,推进AI可解释性研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号