Project Icon

RAGatouille

优化RAG管道的先进检索工具

RAGatouille是一个开源的检索增强生成(RAG)工具包,专注于将先进的检索方法应用于RAG管道。它集成了ColBERT等最新研究成果,提供简单易用的API接口用于模型训练、文档索引和检索。RAGatouille的设计理念是模块化和易用性,同时保持高度可定制性。通过优化检索性能,该工具包旨在提升RAG系统的整体效果,促进信息检索技术在实际应用中的发展。

colbertv2-camembert-L4-mmarcoFR - 轻量级法语语义检索模型支持高效文本匹配
ColBERTGithubHuggingfaceRAGatouillemMARCO开源项目模型法语模型语义搜索
该法语语义检索模型采用轻量级设计,通过token级别编码实现文本匹配。模型在mMARCO-fr数据集评测中取得91.9%的召回率,参数量为54M。支持RAGatouille和colbert-ai框架集成,可用于构建法语搜索系统。
Advanced_RAG - 深入探索RAG和Langchain框架在语言理解中的应用
Advanced_RAGGithubLLMsLangchainMulti Query RetrieverSelf-Reflection-RAG开源项目
该项目通过Python笔记本展示了RAG的高级技术,旨在优化大型语言模型(LLMs)的知识丰富度和上下文感知能力。从基础流程到多查询检索、自我反思、和自适应代理等高级架构,全面覆盖了核心组件及其工作方式。项目提供了构建RAG应用的详细指南,展示了如何通过Langchain框架提升文本生成的准确性和信息丰富度。内容包括查询转换、数据源路由和向量数据库索引等关键技术,为LLM应用提供坚实支持。
rags - 使用自然语言从数据源创建RAG管道
GithubOpenAIRAGsStreamlit开源项目数据管道自然语言处理
RAGs是一个基于Streamlit的应用程序,使用自然语言从数据源创建RAG管道。用户可以描述任务和参数,查看和修改生成的参数,并通过RAG代理查询数据。项目支持多种LLM和嵌入模型,默认使用OpenAI构建代理。该应用程序提供了一个标准的聊天界面,能够通过Top-K向量搜索或总结功能满足查询需求。了解更多关于安装和配置的信息,请访问GitHub页面或加入Discord社区。
rag-fusion - 多重查询生成与排名融合的新型搜索技术
GithubRAG-Fusion向量搜索开源项目搜索技术查询生成重排算法
RAG-Fusion是一种创新搜索方法,旨在弥合传统搜索与复杂人类查询间的差距。它结合检索增强生成(RAG)技术,通过多重查询生成和倒数等级融合重排搜索结果。该项目利用OpenAI的GPT模型生成多样化查询,进行向量搜索,并应用倒数等级融合算法重新排序相关文档。RAG-Fusion致力于挖掘隐藏在热门结果之外的深层知识,推动搜索技术迈向新前沿。
rag-chatbot - RAG聊天机器人 支持多PDF智能对话和灵活部署
GithubGradioHuggingfacePDF聊天RAG开源项目本地运行
rag-chatbot项目采用检索增强生成(RAG)技术,实现了与多个PDF文档的智能交互。系统支持本地运行和Kaggle环境,可灵活选择Huggingface或Ollama的各类模型。其特色功能包括多PDF并行处理、跨语言对话潜力和简易部署流程。项目持续优化中,未来将引入高级文档管理和ReAct Agent等功能,适用于研究、教育和企业等多种场景。
beyondllm - RAG系统开发与部署的一站式工具包
AI教育BeyondLLMGithubRAG系统大语言模型开源项目
BeyondLLM是一个面向检索增强生成(RAG)系统的综合开发工具包。它集成了自动化流程、可定制评估指标和多种大型语言模型支持,简化RAG系统的实验、评估和部署过程。该工具有助于减少LLM幻觉,提升系统可靠性,支持RAG应用的快速迭代和监控。BeyondLLM兼容Python 3.8-3.11版本,为开发者提供简洁高效的API接口。
graphrag - 提升文本数据结构化处理能力的先进工具
AI生图GithubGraphRAGLLMs开源项目数据管道热门知识图谱隐私数据
GraphRAG是一个革新的数据管道和转换套件,旨在利用大型语言模型(LLMs)的力量从非结构化文本中提取有意义的结构化数据。该项目通过加快索引过程并优化提示调整,提供在Azure上的端到端用户体验,有效增强LLMs处理私有数据的能力。此外,GraphRAG的研究和开发还专注于推动负责任的AI使用,确保用户能够最大限度地发挥系统的潜力并减少限制的影响。
RAG-Survey - RAG技术全面综述 基础方法、增强技术及未来方向
GithubRAG人工智能大语言模型开源项目检索增强生成自然语言处理
该研究对检索增强生成(RAG)技术进行了系统性调查和分类。文章全面总结了RAG的基础方法,包括基于查询、潜在表示和logit的技术,以及新兴的推测性RAG。同时深入探讨了RAG的多种增强策略,涵盖输入优化、检索器改进和生成器增强等关键方面。这份综述为AI领域的研究人员和开发者提供了RAG技术的最新进展概览,有助于把握未来研究方向。
self-rag - 通过自反学习使语言模型实现按需检索、生成和评估的框架
GithubSelf-RAG关键词生成开源项目检索增强生成自我反思语言模型
Self-RAG是一种创新框架,通过自反学习使语言模型实现按需检索、生成和评估。该方法预测反思标记,支持多次检索或跳过检索,并从多角度评估生成内容。这不仅提高了模型输出的事实性和质量,还保持了语言模型的通用性能。
rag-gpt - 集成前端、后端及管理控制台能够快速部署智能客服系统
GithubLLMRAG-GPT后台管理开源项目智能客服系统部署
RAG-GPT项目允许用户利用Flask, LLM及RAG快速启动一个智能客服系统,整合了前端、后端和管理控制台。支持多种知识库的集成,配置灵活,界面友好,可在五分钟内部署生产级会话服务。适用于需要高效、高可定制的客服解决方案的业务。RAG-GPT为企业提供了一个多面的、易于配置的智能客服平台,支持Docker直接部署或源代码部署,兼容多种大型语言模型(Large Language Models),如OpenAI的GPT和Moonshot,满足各型企业的需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号