Project Icon

MobileSAM

高效轻量化图像分割模型,适用于移动设备

MobileSAM是一种轻量级图像分割模型,专为移动应用优化。它保持了与原始SAM相当的性能,同时大幅减少了模型参数和推理时间。通过将ViT-H编码器替换为TinyViT,MobileSAM将参数量从615M降至9.66M,推理速度从456ms提升至12ms。该项目提供完整的训练和使用文档,支持ONNX导出,可轻松集成到现有SAM项目中。

mobilenetv3_small_050.lamb_in1k - 探索资源有效利用的MobileNet-v3图像分类模型
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
该项目展示了在ImageNet-1k上训练的MobileNet-v3图像分类模型,强调其在资源受限环境中的适用性。使用LAMB优化器和EMA权重平均化,该模型参照ResNet Strikes Back设计,通过简化预处理流程,支持图像分类、特征提取和图像嵌入等多种深度学习任务,增强模型性能。
segment-anything-fast - 高性能图像分割模型加速框架
AI模型加速GithubPyTorchSegment Anything图像分割开源项目推理优化
segment-anything-fast是基于Facebook's segment-anything的优化版本,专注于提高图像分割模型的性能。通过整合bfloat16、torch.compile和自定义Triton内核等技术,该项目显著提升了模型推理速度。它支持多种优化方法,如动态int8对称量化和2:4稀疏格式,同时保持了简单的安装和使用流程。这使得开发者能够轻松替换原始segment-anything,实现更高效的图像分割。该优化框架适用于需要实时或大规模图像分割处理的应用,如自动驾驶、医疗影像分析或视频编辑等领域,可显著提高处理效率和资源利用率。
tf_mobilenetv3_small_minimal_100.in1k - MobileNetV3小型化模型:高效移动端图像分类
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
tf_mobilenetv3_small_minimal_100.in1k是一款针对移动设备优化的轻量级图像分类模型。基于MobileNet-v3架构,该模型在ImageNet-1k数据集上训练,仅有200万参数和0.1 GMACs,适用于224x224像素的图像输入。除图像分类外,它还可作为特征提取器用于其他计算机视觉任务。通过timm库,开发者可以方便地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。这个模型平衡了性能和效率,特别适合资源受限的移动应用场景。
mobilenetv3_large_100.ra_in1k - MobileNet-v3 轻量级高效图像分类模型
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
MobileNet-v3是一款针对移动设备优化的图像分类模型。它在ImageNet-1k数据集上训练,采用RandAugment增强技术和RMSProp优化器。模型参数仅5.5M,计算量0.2 GMACs,支持224x224像素输入。除图像分类外,还可用于特征提取和生成图像嵌入,是资源受限环境下的理想选择。
mobilevitv2-1.0-imagenet1k-256 - MobileViTv2中的可分离自注意力实现高效图像分类
GithubHuggingfaceImageNetMobileViTv2PyTorch分离自注意力图像分类开源项目模型
MobileViTv2是一个图像分类模型,通过引入可分离自注意力机制,提升计算效率与性能。该模型在ImageNet-1k数据集上预训练,适用于大规模图像分类任务,并支持PyTorch平台。用户可使用此模型进行未处理图像的分类,或寻找适合特定任务的微调版本,为图像识别应用带来优化。
SegmentAnything3D - Segment Anything技术在3D场景中的创新应用
3D感知GithubSegment Anything 3D图像分割开源项目点云处理计算机视觉
SAM3D项目将Segment Anything技术扩展到3D感知领域,通过将2D图像分割信息转移到3D空间,为3D场景理解提供新思路。该项目结合SAM生成掩码、点云合并和区域合并等技术,实现2D到3D的有效转换。SAM3D不仅拓展了计算机视觉的应用范围,也为3D场景分析和理解开辟了新的研究方向。
mobilenetv2_100.ra_in1k - 轻量级CNN模型实现图像分类与特征提取
GithubHuggingfaceImageNet-1kMobileNetV2timm图像分类开源项目模型特征提取
MobileNetV2是为移动和嵌入式视觉应用设计的轻量级卷积神经网络。该模型在ImageNet-1k数据集上训练,采用RandAugment数据增强和EMA权重平均技术。MobileNetV2在低计算复杂度下实现了高效的图像分类和特征提取。通过timm库,开发者可以便捷地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。
mobilenetv4_conv_small.e2400_r224_in1k - MobileNet-V4图像分类模型简介
GithubHuggingfaceImageNetMobileNetV4PyTorchtimm图像分类开源项目模型
MobileNetV4是一个利用ImageNet-1k数据集训练的图像分类模型,具有3.8M参数和0.2 GMACs的复杂度。该模型由timm库优化,使用了与MobileNet-V4论文一致的超参数。其训练和测试图像尺寸分别为224x224和256x256,适用于移动平台。更多信息可在PyTorch Image Models和相关论文中找到。
segment-anything - 革命性AI模型实现高效图像分割
AI模型GithubSegment Anything图像分割开源项目深度学习计算机视觉
Segment Anything是Meta AI Research开发的图像分割模型,能通过简单输入生成高质量物体遮罩。该模型经过大规模数据训练,具备强大的零样本分割能力。它提供多种版本,支持ONNX导出,并附有示例和文档,便于集成应用。
opencv-mobile - 优化轻量化的OpenCV库 适配多平台移动与桌面系统
Githubopencv-mobile开源项目移动设备计算机视觉跨平台预构建包
opencv-mobile是OpenCV库的轻量级优化版本,专为移动和嵌入式设备设计。该项目支持Android、iOS、ARM Linux等多种平台,提供2.4、3.4和4.10三个主要版本。通过精简库体积并保留核心功能,使其更适合资源受限环境。opencv-mobile将OpenCV库的体积缩小了90%以上,Android版从292MB减少到17.7MB,iOS版从207MB减少到3.97MB,同时保留了核心计算机视觉功能。所有二进制文件均在GitHub Actions上公开编译,确保代码透明和安全性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号