Project Icon

CLIP-ImageSearch-NCNN

利用CLIP快速进行手机相册中的自然语言图像搜索

CLIP-ImageSearch-NCNN项目在移动设备和x86平台上使用CLIP模型实现了自然语言图像检索功能。通过图像和文本特征提取,支持以图搜图、以字搜图等多种搜索方式,提供高效的图像搜索体验。项目包含适用于Android和x86平台的demo,利用ncnn进行部署,广泛适用于手机相册等图像搜索应用。

CLIP-ViT-bigG-14-laion2B-39B-b160k - CLIP-ViT-bigG-14模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-2BViT-bigG/14开源模型开源项目模型零样本图像分类
CLIP-ViT-bigG-14-laion2B-39B-b160k是基于LAION-2B数据集训练的大规模视觉语言模型。该模型在零样本图像分类、图像文本检索等任务中表现出色,在ImageNet-1k测试中实现80.1%的零样本top-1准确率。模型采用ViT-bigG/14架构,由stability.ai提供计算资源支持。虽然适合研究人员探索零样本分类和跨模态学习,但目前不建议直接应用于商业场景。
mlc-MiniCPM - Android设备上运行MiniCPM轻量级AI模型
AndroidGithubMLC-LLMMiniCPM开源项目模型量化移动端部署
mlc-MiniCPM项目基于MLC-LLM技术,实现了MiniCPM和MiniCPM-V模型在Android设备上的运行。该项目开发了Android应用程序,支持用户与AI模型进行文本和图像交互。通过4位量化技术,项目将模型压缩以适应移动设备资源,在保持性能的同时提高运行效率。
clipseg-rd64-refined - 基于文本和图像提示的先进图像分割策略
CLIPSegGithubHuggingface一样本学习图像分割复杂卷积开源项目模型零样本学习
该模型引入先进的复杂卷积技术,支持零样本和单样本图像分割。结合文本与图像提示,该模型在图像分析中提供高效且准确的分割性能。
siglip-so400m-patch14-224 - 增强图像文本任务的性能,探索形状优化模型
GithubHuggingfaceSigLIPWebLI对比学习开源项目模型视觉零样本图像分类
SigLIP通过sigmoid损失函数优化了CLIP模型的图像和文本匹配性能。此模型在WebLi数据集上预训练,可实现更大的批量训练,同时在小批量下表现出色。适用于零样本图像分类和图像文本检索任务,能在不同环境下获得高效结果。该模型在16个TPU-v4芯片上训练三天,而图像预处理中使用标准化和归一化,提升了计算效率。
vit_base_patch16_clip_224.openai - CLIP:跨模态视觉语言理解模型
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉-语言预训练模型,在timm库中实现。它使用ViT-B/16 Transformer作为图像编码器,masked self-attention Transformer作为文本编码器,通过对比学习优化图像-文本对相似度。CLIP在零样本图像分类任务中展现出优秀的鲁棒性和泛化能力,但在细粒度分类和物体计数方面仍有局限。该模型主要面向AI研究人员,用于探索计算机视觉模型的能力和局限性。
ScreenAI - 深度理解界面和信息图的视觉语言模型
GithubScreenAIUI理解信息图表理解多模态开源项目视觉语言模型
ScreenAI是一个开源的多模态视觉语言模型,专注于用户界面(UI)和信息图的理解。该模型集成了视觉变换器(ViT)、注意力机制和前馈网络,能够处理图像和文本输入。通过深度学习技术,ScreenAI实现了对复杂视觉信息的处理和文本整合分析,为UI设计、信息可视化和人机交互研究提供了新的工具和方法。
Visual-Chinese-LLaMA-Alpaca - 多模态中文模型VisualCLA开发与优化技术
CLIP-ViTChinese-Alpaca-PlusGithubLLaMAVisual-Chinese-LLaMA-Alpaca多模态模型开源项目
VisualCLA基于中文LLaMA/Alpaca模型,增加图像编码模块,实现图文联合理解和对话能力。目前发布测试版,提供推理代码和部署脚本,并展示多模态指令理解效果。未来将通过预训练和精调优化,扩展应用场景。
chinese-clip-vit-huge-patch14 - 基于ViT-H/14和RoBERTa的中文图文对比学习模型
Chinese-CLIPGithubHuggingface中文数据集图像编码器开源项目文本编码器检索模型
chinese-clip-vit-huge-patch14是一个基于ViT-H/14和RoBERTa-wwm-large的中文CLIP模型,在大规模中文图文数据上训练,表现卓越。支持在MUGE、Flickr30K-CN和COCO-CN等数据集中的图文检索和零样本分类。提供API实现简便的图文特征提取及相似度计算,详情请参见GitHub仓库。
blip2-opt-6.7b-coco - 结合图像理解与自然语言处理的多模态AI系统
BLIP-2GithubHuggingfaceOPT-6.7b图像标注图像编码器开源项目模型视觉问答
BLIP-2是一种创新的视觉-语言AI系统,集成了CLIP图像编码器、查询转换器和OPT-6.7b大型语言模型。通过冻结预训练的图像编码器和语言模型,仅训练查询转换器,实现了视觉和语言的有效桥接。该模型能够完成图像描述、视觉问答和基于图像的对话等多样化任务。尽管BLIP-2继承了OPT模型的强大能力,但研究人员在应用时需要注意评估其在特定场景中可能存在的偏见和安全风险。
mllm - 轻量级移动设备多模态大语言模型推理引擎
AI推理引擎Githubmultimodal LLM开源项目移动设备边缘计算量化
mllm是一款针对移动和边缘设备优化的多模态大语言模型推理引擎。该引擎采用纯C/C++实现,无外部依赖,支持ARM NEON和x86 AVX2指令集,并提供4位和6位整数量化。开发者可利用mllm构建智能个人助理、基于文本的图像搜索、屏幕视觉问答等移动应用,实现本地推理而无需上传敏感数据。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号